{"title":"Jacobian varieties with group algebra decomposition not affordable by Prym varieties","authors":"Benjamín M. Moraga","doi":"10.1016/j.jpaa.2024.107803","DOIUrl":null,"url":null,"abstract":"<div><div>The action of a finite group <em>G</em> on a compact Riemann surface <em>X</em> naturally induces another action of <em>G</em> on its Jacobian variety <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. In many cases, each component of the group algebra decomposition of <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is isogenous to a Prym varieties of an intermediate covering of the Galois covering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi><mo>/</mo><mi>G</mi></math></span>; in such a case, we say that the group algebra decomposition is affordable by Prym varieties. In this article, we present an infinite family of groups that act on Riemann surfaces in a manner that the group algebra decomposition of <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is not affordable by Prym varieties; namely, affine groups <span><math><mi>Aff</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> with some exceptions: <span><math><mi>q</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>=</mo><mn>9</mn></math></span>, <em>q</em> a Fermat prime, <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> a Mersenne prime and some particular cases when <span><math><mi>X</mi><mo>/</mo><mi>G</mi></math></span> has genus 0 or 1. In each one of this exceptional cases, we give the group algebra decomposition of <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> by Prym varieties.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The action of a finite group G on a compact Riemann surface X naturally induces another action of G on its Jacobian variety . In many cases, each component of the group algebra decomposition of is isogenous to a Prym varieties of an intermediate covering of the Galois covering ; in such a case, we say that the group algebra decomposition is affordable by Prym varieties. In this article, we present an infinite family of groups that act on Riemann surfaces in a manner that the group algebra decomposition of is not affordable by Prym varieties; namely, affine groups with some exceptions: , , q a Fermat prime, with a Mersenne prime and some particular cases when has genus 0 or 1. In each one of this exceptional cases, we give the group algebra decomposition of by Prym varieties.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.