Jacobian varieties with group algebra decomposition not affordable by Prym varieties

IF 0.7 2区 数学 Q2 MATHEMATICS
Benjamín M. Moraga
{"title":"Jacobian varieties with group algebra decomposition not affordable by Prym varieties","authors":"Benjamín M. Moraga","doi":"10.1016/j.jpaa.2024.107803","DOIUrl":null,"url":null,"abstract":"<div><div>The action of a finite group <em>G</em> on a compact Riemann surface <em>X</em> naturally induces another action of <em>G</em> on its Jacobian variety <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. In many cases, each component of the group algebra decomposition of <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is isogenous to a Prym varieties of an intermediate covering of the Galois covering <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi><mo>/</mo><mi>G</mi></math></span>; in such a case, we say that the group algebra decomposition is affordable by Prym varieties. In this article, we present an infinite family of groups that act on Riemann surfaces in a manner that the group algebra decomposition of <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is not affordable by Prym varieties; namely, affine groups <span><math><mi>Aff</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> with some exceptions: <span><math><mi>q</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>=</mo><mn>9</mn></math></span>, <em>q</em> a Fermat prime, <span><math><mi>q</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span> a Mersenne prime and some particular cases when <span><math><mi>X</mi><mo>/</mo><mi>G</mi></math></span> has genus 0 or 1. In each one of this exceptional cases, we give the group algebra decomposition of <span><math><mi>J</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> by Prym varieties.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002007","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The action of a finite group G on a compact Riemann surface X naturally induces another action of G on its Jacobian variety J(X). In many cases, each component of the group algebra decomposition of J(X) is isogenous to a Prym varieties of an intermediate covering of the Galois covering πG:XX/G; in such a case, we say that the group algebra decomposition is affordable by Prym varieties. In this article, we present an infinite family of groups that act on Riemann surfaces in a manner that the group algebra decomposition of J(X) is not affordable by Prym varieties; namely, affine groups Aff(Fq) with some exceptions: q=2, q=9, q a Fermat prime, q=2n with 2n1 a Mersenne prime and some particular cases when X/G has genus 0 or 1. In each one of this exceptional cases, we give the group algebra decomposition of J(X) by Prym varieties.
具有群代数分解的雅各布品种不是普莱姆品种所能负担得起的
有限群 G 在紧凑黎曼曲面 X 上的作用自然会引起 G 在其雅各布综 J(X) 上的另一个作用。在许多情况下,J(X) 的群代数分解的每个分量都与伽罗瓦覆盖πG:X→X/G 的中间覆盖的 Prym 变项同源;在这种情况下,我们说群代数分解是由 Prym 变项负担得起的。在这篇文章中,我们提出了一个无穷群族,这些群族作用于黎曼曲面时,J(X) 的群代数分解不能由 Prym varieties 承担;即仿射群 Aff(Fq),但有一些例外情况:q=2,q=9,q 是费马素数,q=2n,2n-1 是梅森素数,以及 X/G 属 0 或 1 的一些特殊情况。在每一种特殊情况下,我们都给出了 J(X) 的普赖姆变项的群代数分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信