Jiahui Zhao , Jiaming Wu , Sunney Fotedar , Zhibin Li , Pan Liu
{"title":"Fleet availability analysis and prediction for shared e-scooters: An energy perspective","authors":"Jiahui Zhao , Jiaming Wu , Sunney Fotedar , Zhibin Li , Pan Liu","doi":"10.1016/j.trd.2024.104425","DOIUrl":null,"url":null,"abstract":"<div><div>E-scooters have become a prevalent mode of transportation in many cities. The availability of e-scooters is a crucial indicator of service quality but has not been sufficiently investigated. We propose a two-stage method for fleet availability analysis and prediction, considering stochastic demand and a new energy perspective. First, we developed a SpatioTemporalAttentionNet (STAN) model to predict trip OD. Second, we propose a Monte Carlo-based algorithm to match demand with existing e-scooters across spatiotemporal and energy dimensions. We conduct case studies using real-world data from Gothenburg, Sweden. The results indicate an average unavailability rate of 6.71%, nearly doubling that of the benchmark group, which uses a 20% SoC threshold for determining availability. This rate is significant considering the large fleet size and highlights the need to incorporate battery levels into fleet management. We further investigate the multifaceted impacts of land use and walking distance on availability dynamics.</div></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":"136 ","pages":"Article 104425"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361920924003821/pdfft?md5=c55a3a816e01c619b607a1dd0e6d52db&pid=1-s2.0-S1361920924003821-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003821","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
E-scooters have become a prevalent mode of transportation in many cities. The availability of e-scooters is a crucial indicator of service quality but has not been sufficiently investigated. We propose a two-stage method for fleet availability analysis and prediction, considering stochastic demand and a new energy perspective. First, we developed a SpatioTemporalAttentionNet (STAN) model to predict trip OD. Second, we propose a Monte Carlo-based algorithm to match demand with existing e-scooters across spatiotemporal and energy dimensions. We conduct case studies using real-world data from Gothenburg, Sweden. The results indicate an average unavailability rate of 6.71%, nearly doubling that of the benchmark group, which uses a 20% SoC threshold for determining availability. This rate is significant considering the large fleet size and highlights the need to incorporate battery levels into fleet management. We further investigate the multifaceted impacts of land use and walking distance on availability dynamics.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.