An Lq(Lp)-regularity theory for parabolic equations with integro-differential operators having low intensity kernels

IF 2.4 2区 数学 Q1 MATHEMATICS
Jaehoon Kang , Daehan Park
{"title":"An Lq(Lp)-regularity theory for parabolic equations with integro-differential operators having low intensity kernels","authors":"Jaehoon Kang ,&nbsp;Daehan Park","doi":"10.1016/j.jde.2024.09.033","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we present the existence, uniqueness, and regularity of solutions to parabolic equations with non-local operators<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>a</mi></mrow></msup><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>&gt;</mo><mn>0</mn></math></span></span></span> in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> spaces. Our spatial operator <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span> is an integro-differential operator of the form<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></munder><mrow><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>)</mo><mo>−</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>⋅</mo><mi>y</mi><msub><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>y</mi><mo>|</mo><mo>≤</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mi>a</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo><msub><mrow><mi>j</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mo>|</mo><mi>y</mi><mo>|</mo><mo>)</mo><mi>d</mi><mi>y</mi><mo>.</mo></math></span></span></span> Here, <span><math><mi>a</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is a merely bounded measurable coefficient, and we employed the theory of additive process to handle it. We investigate conditions on <span><math><msub><mrow><mi>j</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>)</mo></math></span> which yield <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span>-regularity of solutions. Our assumptions on <span><math><msub><mrow><mi>j</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> are general so that <span><math><msub><mrow><mi>j</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>)</mo></math></span> may be comparable to <span><math><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><mi>ℓ</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> for a function <em>ℓ</em> which is slowly varying at infinity. For example, we can take <span><math><mi>ℓ</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>)</mo></math></span> or <span><math><mi>ℓ</mi><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msup><mrow><mi>r</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo><mn>1</mn><mo>}</mo></math></span> (<span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>). Indeed, our result covers the operators whose Fourier multiplier <span><math><mi>ψ</mi><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> does not have any scaling condition for <span><math><mo>|</mo><mi>ξ</mi><mo>|</mo><mo>≥</mo><mn>1</mn></math></span>. Furthermore, we give some examples of operators, which cannot be covered by previous results where smoothness or scaling conditions on <em>ψ</em> are considered.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006181","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present the existence, uniqueness, and regularity of solutions to parabolic equations with non-local operatorstu(t,x)=Lau(t,x)+f(t,x),t>0 in Lq(Lp) spaces. Our spatial operator La is an integro-differential operator of the formRd(u(x+y)u(x)u(x)y1|y|1)a(t,y)jd(|y|)dy. Here, a(t,y) is a merely bounded measurable coefficient, and we employed the theory of additive process to handle it. We investigate conditions on jd(r) which yield Lq(Lp)-regularity of solutions. Our assumptions on jd are general so that jd(r) may be comparable to rd(r1) for a function which is slowly varying at infinity. For example, we can take (r)=log(1+rα) or (r)=min{rα,1} (α(0,2)). Indeed, our result covers the operators whose Fourier multiplier ψ(ξ) does not have any scaling condition for |ξ|1. Furthermore, we give some examples of operators, which cannot be covered by previous results where smoothness or scaling conditions on ψ are considered.
具有低强度核的积分微分算子抛物方程的 Lq(Lp)- 规则性理论
本文提出了 Lq(Lp) 空间中带有非局部算子∂tu(t,x)=Lau(t,x)+f(t,x),t>0 的抛物方程解的存在性、唯一性和正则性。我们的空间算子 La 是一个形式为∫Rd(u(x+y)-u(x)-∇u(x)⋅y1|y|≤1)a(t,y)jd(|y|)dy 的积分微分算子。这里,a(t,y) 只是一个有界的可测系数,我们用加法过程理论来处理它。我们研究了 jd(r) 的条件,这些条件产生了 Lq(Lp) 规则性解。我们对 jd 的假设是一般性的,因此对于在无穷远处缓慢变化的函数 ℓ 而言,jd(r) 可能与 r-dℓ(r-1)相当。例如,我们可以取 ℓ(r)=log(1+rα) 或 ℓ(r)=min{rα,1} (α∈(0,2)) 。事实上,我们的结果涵盖了傅里叶乘数ψ(ξ)对|ξ|≥1不存在任何缩放条件的算子。此外,我们还给出了一些算子的例子,这些算子无法被之前考虑了ψ的平滑性或缩放条件的结果所涵盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信