Optimizing waste handling with interactive AI: Prompt-guided segmentation of construction and demolition waste using computer vision

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Diani Sirimewan , Nilakshan Kunananthaseelan , Sudharshan Raman , Reyes Garcia , Mehrdad Arashpour
{"title":"Optimizing waste handling with interactive AI: Prompt-guided segmentation of construction and demolition waste using computer vision","authors":"Diani Sirimewan ,&nbsp;Nilakshan Kunananthaseelan ,&nbsp;Sudharshan Raman ,&nbsp;Reyes Garcia ,&nbsp;Mehrdad Arashpour","doi":"10.1016/j.wasman.2024.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>Optimized and automated methods for handling construction and demolition waste (CDW) are crucial for improving the resource recovery process in waste management. Automated waste recognition is a critical step in this process, and it relies on robust image segmentation techniques. Prompt-guided segmentation methods provide promising results for specific user needs in image recognition. However, the current state-of-the-art segmentation methods trained for generic images perform unsatisfactorily on CDW recognition tasks, indicating a domain gap. To address this gap, a user-guided segmentation pipeline is developed in this study that leverages prompts such as bounding boxes, points, and text to segment CDW in cluttered environments. The adopted approach achieves a class-wise performance of around 70 % in several waste categories, surpassing the state-of-the-art algorithms by 9 % on average. This method allows users to create accurate segmentations by drawing a bounding box, clicking, or providing a text prompt, minimizing the time spent on detailed annotations. Integrating this human–machine system as a user-friendly interface into material recovery facilities enhances the monitoring and processing of waste, leading to better resource recovery outcomes in waste management.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"190 ","pages":"Pages 149-160"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0956053X24005051/pdfft?md5=697cf48bfd0b2c48a8ab709c966b63ce&pid=1-s2.0-S0956053X24005051-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24005051","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optimized and automated methods for handling construction and demolition waste (CDW) are crucial for improving the resource recovery process in waste management. Automated waste recognition is a critical step in this process, and it relies on robust image segmentation techniques. Prompt-guided segmentation methods provide promising results for specific user needs in image recognition. However, the current state-of-the-art segmentation methods trained for generic images perform unsatisfactorily on CDW recognition tasks, indicating a domain gap. To address this gap, a user-guided segmentation pipeline is developed in this study that leverages prompts such as bounding boxes, points, and text to segment CDW in cluttered environments. The adopted approach achieves a class-wise performance of around 70 % in several waste categories, surpassing the state-of-the-art algorithms by 9 % on average. This method allows users to create accurate segmentations by drawing a bounding box, clicking, or providing a text prompt, minimizing the time spent on detailed annotations. Integrating this human–machine system as a user-friendly interface into material recovery facilities enhances the monitoring and processing of waste, leading to better resource recovery outcomes in waste management.
利用交互式人工智能优化废物处理:利用计算机视觉对建筑和拆除废物进行提示性引导分割
处理建筑和拆除废物(CDW)的优化和自动化方法对于改善废物管理中的资源回收过程至关重要。废物自动识别是这一过程中的关键步骤,它依赖于强大的图像分割技术。针对图像识别中的特定用户需求,提示引导分割方法提供了很好的结果。然而,目前最先进的、针对普通图像进行训练的分割方法在垃圾围堰识别任务中的表现并不令人满意,这表明存在领域差距。为了弥补这一差距,本研究开发了用户引导分割管道,利用边界框、点和文本等提示来分割杂乱环境中的 CDW。所采用的方法在多个废物类别中实现了约 70% 的分类性能,比最先进的算法平均高出 9%。这种方法允许用户通过绘制边界框、点击或提供文本提示来创建精确的分割,从而最大限度地减少了用于详细注释的时间。将这一人机系统作为用户友好界面集成到材料回收设施中,可加强对废物的监控和处理,从而在废物管理中实现更好的资源回收效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信