Solitary wave solutions and their limits to the fractional Schrödinger system

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Guoyi Fu, Xiaoyan Chen, Shihui Zhu
{"title":"Solitary wave solutions and their limits to the fractional Schrödinger system","authors":"Guoyi Fu,&nbsp;Xiaoyan Chen,&nbsp;Shihui Zhu","doi":"10.1016/j.wavemoti.2024.103416","DOIUrl":null,"url":null,"abstract":"<div><div>This study is concerned with solitary wave solutions and the dynamic behavior of the (2+1)-dimensional nonlinear fractional Schrödinger system. By exploring the dynamic properties of the equilibrium levels to the corresponding Hamiltonian, the expressions of exact solutions of the above system are obtained, including solitary wave solutions, periodic wave solutions, singular periodic wave solutions, singular wave solutions, kink wave solutions, and anti-kink wave solutions. Moreover, the linear stability, geometric characteristics, and limiting behavior of these solutions to the nonlinear fractional Schrödinger system were investigated.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"131 ","pages":"Article 103416"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016521252400146X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study is concerned with solitary wave solutions and the dynamic behavior of the (2+1)-dimensional nonlinear fractional Schrödinger system. By exploring the dynamic properties of the equilibrium levels to the corresponding Hamiltonian, the expressions of exact solutions of the above system are obtained, including solitary wave solutions, periodic wave solutions, singular periodic wave solutions, singular wave solutions, kink wave solutions, and anti-kink wave solutions. Moreover, the linear stability, geometric characteristics, and limiting behavior of these solutions to the nonlinear fractional Schrödinger system were investigated.
分数薛定谔系统的孤波解及其极限
本研究关注(2+1)维非线性分数薛定谔系统的孤波解和动力学行为。通过探索相应哈密顿的平衡级的动态特性,得到了上述系统的精确解的表达式,包括孤波解、周期波解、奇异周期波解、奇异波解、扭结波解和反扭结波解。此外,还研究了这些解对非线性分数薛定谔系统的线性稳定性、几何特性和极限行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信