Effects of transverse divider wall within the squealer cavity on the performance of a novel squealer tip with rail crown holes for the gas turbine blade
Haimeng Zhou , Lei Luo , Quanzhong Wang , Wei Du , Yan Han , Songtao Wang
{"title":"Effects of transverse divider wall within the squealer cavity on the performance of a novel squealer tip with rail crown holes for the gas turbine blade","authors":"Haimeng Zhou , Lei Luo , Quanzhong Wang , Wei Du , Yan Han , Songtao Wang","doi":"10.1016/j.ijthermalsci.2024.109432","DOIUrl":null,"url":null,"abstract":"<div><div>The squealer tip with rail crown holes is a novel design that offers superior overall performance, effectively enhancing tip cooling and controlling leakage flow in turbine blades. In this study, the transverse divider wall is added to the squealer cavity further to explore the potential advantages of this novel blade tip structure. This study aims to investigate the influence of the position and number of the divider walls on the blade tip performance. Numerical results show that the hindrance effect of the divider wall significantly enlarges the range of the cavity coolant, which enhances the coolant reattachment on the cavity floor and reduces the leading-edge high heat transfer coefficient (<em>h</em>). After cavity flow strides over the divider wall, it inclinedly impacts the rear cavity floor, forming a reattachment line (RL), which increases both the film cooling efficiency (<em>η</em>) and <em>h</em> behind the divider wall. As the divider wall shifts backward, the <em>h</em> near the leading-edge RL gradually increases, and the low-<em>η</em> region of the suction-side corner is expanded. As the divider wall number increases, the second utilization of the coolant within the cavity is improved, compared with Baseline, the <span><math><mrow><mover><mi>η</mi><mo>‾</mo></mover></mrow></math></span> in case with three divider walls is improved by about 59.13 %. The flow structure near each divider wall is similar, simultaneously, the downstream divider wall can promote coolant attachment near the adjacent upstream divider wall. In aerodynamic aspect, the position and number of the divider walls minimally influence the total leakage flow rate (<em>LFR</em>), but they exert a notable effect on the <em>LFR</em> distribution along streamwise. In general, upstream of the divider wall, the <em>LFR</em> is significantly diminished, but the reduced leakage is compensated downstream of the divider wall, resulting in an overall constant total leakage.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109432"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005544","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The squealer tip with rail crown holes is a novel design that offers superior overall performance, effectively enhancing tip cooling and controlling leakage flow in turbine blades. In this study, the transverse divider wall is added to the squealer cavity further to explore the potential advantages of this novel blade tip structure. This study aims to investigate the influence of the position and number of the divider walls on the blade tip performance. Numerical results show that the hindrance effect of the divider wall significantly enlarges the range of the cavity coolant, which enhances the coolant reattachment on the cavity floor and reduces the leading-edge high heat transfer coefficient (h). After cavity flow strides over the divider wall, it inclinedly impacts the rear cavity floor, forming a reattachment line (RL), which increases both the film cooling efficiency (η) and h behind the divider wall. As the divider wall shifts backward, the h near the leading-edge RL gradually increases, and the low-η region of the suction-side corner is expanded. As the divider wall number increases, the second utilization of the coolant within the cavity is improved, compared with Baseline, the in case with three divider walls is improved by about 59.13 %. The flow structure near each divider wall is similar, simultaneously, the downstream divider wall can promote coolant attachment near the adjacent upstream divider wall. In aerodynamic aspect, the position and number of the divider walls minimally influence the total leakage flow rate (LFR), but they exert a notable effect on the LFR distribution along streamwise. In general, upstream of the divider wall, the LFR is significantly diminished, but the reduced leakage is compensated downstream of the divider wall, resulting in an overall constant total leakage.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.