Attention-based integrated deep neural network architecture for predicting the effectiveness of data center power usage

Q1 Chemical Engineering
Yang-Cheng Shih , Sathesh Tamilarasan , Chin-Sheng Chen , Omid Ali Zargar , Yean-Der Kuan
{"title":"Attention-based integrated deep neural network architecture for predicting the effectiveness of data center power usage","authors":"Yang-Cheng Shih ,&nbsp;Sathesh Tamilarasan ,&nbsp;Chin-Sheng Chen ,&nbsp;Omid Ali Zargar ,&nbsp;Yean-Der Kuan","doi":"10.1016/j.ijft.2024.100866","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the critical need for enhanced power usage effectiveness in data centers (DCs), this study pioneers an improved convolutional long short-term memory with deep neural network (CLDNN) model, enriched with attention mechanisms for precise DC performance prediction. We rigorously evaluate our model against leading architectures – long short-term memory (LSTM), attention-based (att-LSTM), convolutional LSTM (CNN-LSTM), gated recurrent unit (GRU), and CNN-GRU – to affirm its superiority in predictive accuracy and robustness. The integration of convolutional layers processes hourly data inputs efficiently, reducing complexity and improving pattern detection. A subsequent flattening layer optimizes accuracy, while a dual-layered LSTM and a deep neural network delve into frequency, temporal dynamics, and complex data relationships. Incorporating an attention mechanism into the att-CLDNN model has revolutionized predictive analytics in DC energy management, significantly enhancing accuracy by highlighting crucial data interdependencies. This model's unparalleled precision, evidenced by achieving the lowest Mean Squared Error (MSE) of 0.000179, the minimum Mean Absolute Error (MAE) of 0.01048, and the highest R2 Score of 0.977031, underscores its effectiveness. Crucially, this breakthrough fosters sustainability in energy management, promoting greener DC operations through precise energy use predictions, leading to substantial energy savings and reduced carbon emissions, in alignment with global sustainability objectives.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100866"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724003070/pdfft?md5=02114f51200ad55f98552ab236201d02&pid=1-s2.0-S2666202724003070-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the critical need for enhanced power usage effectiveness in data centers (DCs), this study pioneers an improved convolutional long short-term memory with deep neural network (CLDNN) model, enriched with attention mechanisms for precise DC performance prediction. We rigorously evaluate our model against leading architectures – long short-term memory (LSTM), attention-based (att-LSTM), convolutional LSTM (CNN-LSTM), gated recurrent unit (GRU), and CNN-GRU – to affirm its superiority in predictive accuracy and robustness. The integration of convolutional layers processes hourly data inputs efficiently, reducing complexity and improving pattern detection. A subsequent flattening layer optimizes accuracy, while a dual-layered LSTM and a deep neural network delve into frequency, temporal dynamics, and complex data relationships. Incorporating an attention mechanism into the att-CLDNN model has revolutionized predictive analytics in DC energy management, significantly enhancing accuracy by highlighting crucial data interdependencies. This model's unparalleled precision, evidenced by achieving the lowest Mean Squared Error (MSE) of 0.000179, the minimum Mean Absolute Error (MAE) of 0.01048, and the highest R2 Score of 0.977031, underscores its effectiveness. Crucially, this breakthrough fosters sustainability in energy management, promoting greener DC operations through precise energy use predictions, leading to substantial energy savings and reduced carbon emissions, in alignment with global sustainability objectives.
用于预测数据中心用电效果的基于注意力的集成深度神经网络架构
为了满足提高数据中心(DC)用电效率的迫切需求,本研究开创了一种改进型卷积长短期记忆深度神经网络(CLDNN)模型,该模型采用了注意力机制,可用于精确的 DC 性能预测。我们对照领先的架构--长短期记忆(LSTM)、注意力型(att-LSTM)、卷积 LSTM(CNN-LSTM)、门控递归单元(GRU)和 CNN-GRU--对我们的模型进行了严格评估,以肯定其在预测准确性和鲁棒性方面的优势。卷积层的整合可高效处理每小时的数据输入,降低复杂性并改进模式检测。随后的扁平化层优化了准确性,而双层 LSTM 和深度神经网络则深入研究了频率、时间动态和复杂的数据关系。在 att-CLDNN 模型中加入注意力机制,彻底改变了直流电能管理中的预测分析方法,通过突出关键数据的相互依存关系,显著提高了准确性。该模型实现了 0.000179 的最低平均平方误差 (MSE)、0.01048 的最小平均绝对误差 (MAE) 和 0.977031 的最高 R2 得分,无与伦比的精确度彰显了其有效性。最重要的是,这一突破促进了能源管理的可持续发展,通过精确的能源使用预测促进了更环保的直流操作,从而节省了大量能源并减少了碳排放,与全球可持续发展目标保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信