{"title":"Interfacial effect investigation of lithium perchlorate-interacted oxygen-containing carbon paper","authors":"","doi":"10.1016/j.susc.2024.122615","DOIUrl":null,"url":null,"abstract":"<div><div>The lithium perchlorate-interacted oxygen-containing carbon paper (LiClO4-OCP) is designed to act as electroactive supercapacitor electrode substrates for the energy storage application. The OCP is fabricated through hydrothermal activation treatment of carbon paper in H<sub>2</sub>O<sub>2</sub> reaction medium. The OCP is composed of graphite pitches with ultra-thin graphene structure of top layer, showing the improved graphitization degree. The LiClO4-OCP with the polarized electrostatic force-induced interfacial adsorption reveals much more intensive interaction than LiClO4-CP with van der Waals force-induced interfacial adsorption, contributing to promoting interfacial charge transfer of LiClO4-OCP. LiClO4-OCP reveals more effective interface charge transfer and more feasible electrolyte diffusion than LiClO4-CP, contributing to higher electrochemical double-layer capacitance. LiClO4-OCP with oxygen-containing groups conducts reversible redox process to supply additional Faradaic capacitance. Mean response current is increased from 0.10 ∼ 1.34 mA cm<sup>-2</sup> for LiClO4-CP to 0.19 ∼ 2.31 mA cm<sup>-2</sup> for LiClO4-OCP at scan rates of 5∼100 mV s<sup>-1</sup>, indicating the improved electrochemical activity of LiClO4-OCP. The cyclic voltammetry-based capacitance increases from 19.91 ∼ 13.01 mF cm<sup>-2</sup> mF g-1 for LiClO4-CP to 37.76 ∼ 23.06 mF cm<sup>-2</sup> for LiClO4-OCP. The galvanostatic charge/discharge-based capacitance decreases from 13.84 ∼ 3.97 mF cm<sup>-2</sup> for LiClO4-CP to 29.71 ∼ 12.92 mF cm<sup>-2</sup> for LiClO4-OCP. Density-functional theory-based simulation calculation proves LiClO4-OCP with such a short molecular distance is allowed to occur strong electrostatic interaction which is caused by the perchlorate ion-induced polarization of oxygen-containing groups. The LiClO4-OCP has lower interfacial energy, lower band gap and higher density of states at Fermi energy level than LiClO4-CP, indicating the improved interfacial interaction and electrical conductivity of LiClO4-OCP. The experimental measurement and theoretical calculation achieve the consistent results of higher electrochemical activity of LiClO4-OCP electrode substrate to present its superior capacitance performance.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001663","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The lithium perchlorate-interacted oxygen-containing carbon paper (LiClO4-OCP) is designed to act as electroactive supercapacitor electrode substrates for the energy storage application. The OCP is fabricated through hydrothermal activation treatment of carbon paper in H2O2 reaction medium. The OCP is composed of graphite pitches with ultra-thin graphene structure of top layer, showing the improved graphitization degree. The LiClO4-OCP with the polarized electrostatic force-induced interfacial adsorption reveals much more intensive interaction than LiClO4-CP with van der Waals force-induced interfacial adsorption, contributing to promoting interfacial charge transfer of LiClO4-OCP. LiClO4-OCP reveals more effective interface charge transfer and more feasible electrolyte diffusion than LiClO4-CP, contributing to higher electrochemical double-layer capacitance. LiClO4-OCP with oxygen-containing groups conducts reversible redox process to supply additional Faradaic capacitance. Mean response current is increased from 0.10 ∼ 1.34 mA cm-2 for LiClO4-CP to 0.19 ∼ 2.31 mA cm-2 for LiClO4-OCP at scan rates of 5∼100 mV s-1, indicating the improved electrochemical activity of LiClO4-OCP. The cyclic voltammetry-based capacitance increases from 19.91 ∼ 13.01 mF cm-2 mF g-1 for LiClO4-CP to 37.76 ∼ 23.06 mF cm-2 for LiClO4-OCP. The galvanostatic charge/discharge-based capacitance decreases from 13.84 ∼ 3.97 mF cm-2 for LiClO4-CP to 29.71 ∼ 12.92 mF cm-2 for LiClO4-OCP. Density-functional theory-based simulation calculation proves LiClO4-OCP with such a short molecular distance is allowed to occur strong electrostatic interaction which is caused by the perchlorate ion-induced polarization of oxygen-containing groups. The LiClO4-OCP has lower interfacial energy, lower band gap and higher density of states at Fermi energy level than LiClO4-CP, indicating the improved interfacial interaction and electrical conductivity of LiClO4-OCP. The experimental measurement and theoretical calculation achieve the consistent results of higher electrochemical activity of LiClO4-OCP electrode substrate to present its superior capacitance performance.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.