Huanhuan Yang, Lingling Song, Yunshan Cao, Peng Yan
{"title":"Circuit realization of topological physics","authors":"Huanhuan Yang, Lingling Song, Yunshan Cao, Peng Yan","doi":"10.1016/j.physrep.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, topolectrical circuits (TECs) boom in studying the topological states of matter. The resemblance between circuit Laplacians and tight-binding models in condensed matter physics allows for the exploration of exotic topological phases on the circuit platform. In this review, we begin by presenting the basic equations for the circuit elements and units, along with the fundamentals and experimental methods for TECs. Subsequently, we retrospect the main literature in this field, encompassing the circuit realization of (higher-order) topological insulators and semimetals. Due to the abundant electrical elements and flexible connections, many unconventional topological states like the non-Hermitian, nonlinear, non-Abelian, non-periodic, non-Euclidean, and higher-dimensional topological states that are challenging to observe in conventional condensed matter physics, have been observed in circuits and summarized in this review. Furthermore, we show the capability of electrical circuits for exploring the physical phenomena in other systems, such as photonic and magnetic ones. Importantly, we highlight TEC systems are convenient for manufacture and miniaturization because of their compatibility with the traditional integrated circuits. Finally, we prospect the future directions in this exciting field, and connect the emerging TECs with the development of topology physics, (meta)material designs, and device applications.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1093 ","pages":"Pages 1-54"},"PeriodicalIF":23.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324003302","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, topolectrical circuits (TECs) boom in studying the topological states of matter. The resemblance between circuit Laplacians and tight-binding models in condensed matter physics allows for the exploration of exotic topological phases on the circuit platform. In this review, we begin by presenting the basic equations for the circuit elements and units, along with the fundamentals and experimental methods for TECs. Subsequently, we retrospect the main literature in this field, encompassing the circuit realization of (higher-order) topological insulators and semimetals. Due to the abundant electrical elements and flexible connections, many unconventional topological states like the non-Hermitian, nonlinear, non-Abelian, non-periodic, non-Euclidean, and higher-dimensional topological states that are challenging to observe in conventional condensed matter physics, have been observed in circuits and summarized in this review. Furthermore, we show the capability of electrical circuits for exploring the physical phenomena in other systems, such as photonic and magnetic ones. Importantly, we highlight TEC systems are convenient for manufacture and miniaturization because of their compatibility with the traditional integrated circuits. Finally, we prospect the future directions in this exciting field, and connect the emerging TECs with the development of topology physics, (meta)material designs, and device applications.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.