Deyue Su , Licai Du , Jianfeng Wang , Gang Li , Fan-li Kong
{"title":"Effects of melatonin on ginseng leaf phenotypic and photosynthetic properties following chilling and freezing stress","authors":"Deyue Su , Licai Du , Jianfeng Wang , Gang Li , Fan-li Kong","doi":"10.1016/j.stress.2024.100599","DOIUrl":null,"url":null,"abstract":"<div><div>Spring frost damage is a significant natural disaster, which can lead to large-scale ginseng (<em>Panax ginseng</em> C. A. Mey) yield reduction. To determine chilling and freezing stress damage to ginseng, we designed an experiment using three-year-old potted ginseng plants. We simulated chilling (0 ± 0.3 ℃) and freezing (-2.5 ± 0.3 ℃, -5 ± 0.3 ℃) in an artificial room, with 16±2 ℃ of the room temperature at night as the control, to evaluate their physiological effects on ginseng leaf spectral reflectance, photosynthetic characteristics, and chlorophyll fluorescence parameters. We also investigated the mitigating effects of exogenous melatonin on ginseng leaves exposed to chilling and freezing stress. All ginseng leaves died under -5 ℃ freezing stress and the mortality rate reached 25∼57 % under -2.5 ℃ freezing stress, while no plants died under 0 ℃ chilling stress. After -2.5 ℃ and 0 ℃ stress, leaf spectral reflectance in the 750∼1000 nm band was significantly lower than the control; transpiration rate, net photosynthetic rate, intercellular CO<sub>2</sub> concentration, and stomatal conductance decreased significantly compared with the control, and there was no significant change in recovery time. The <em>F</em><sub>v</sub>/<em>F</em><sub>m</sub> ratio and <em>q</em><sub>p</sub> decreased after low-temperature stress, while NPQ increased. After one week of melatonin application, leaf spectral reflectance in the 600∼650 and 750∼1000 nm bands reflected significant differences between the effects of melatonin application and no application on ginseng leaf chlorophyll content and structure under freezing stress. Ginseng leaf net photosynthetic rate increased by 23.79 % and 4.48 %, while intercellular CO<sub>2</sub> concentration increased by 33.49 and 11.83 % under stress at -2.5 °C and 0 °C. The ginseng leaf chlorophyll fluorescence parameter (<em>F</em><sub>v</sub>/<em>F</em><sub>m</sub>) recovered to 0.8 and above in one week after melatonin application, and <em>q</em><sub>p</sub> decreased under -2.5 °C and 0 °C stress after melatonin application. Additionally, the NPQ values were 11.44 % and 4.6 % lower in -2.5+MT and 0+MT, respectively, compared to the treatment without MT applied. A sudden drop in temperature to 0 ℃ or even below caused ginseng plant growth inhibition, but melatonin application at a concentration of 100 nmol <em>L</em><sup>−1</sup> had certain mitigating effects on ginseng growth, which provides a theoretical basis and technical support for ginseng production.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100599"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002525/pdfft?md5=2cc7d320e9a0dfd902d66c1d0c6236f0&pid=1-s2.0-S2667064X24002525-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spring frost damage is a significant natural disaster, which can lead to large-scale ginseng (Panax ginseng C. A. Mey) yield reduction. To determine chilling and freezing stress damage to ginseng, we designed an experiment using three-year-old potted ginseng plants. We simulated chilling (0 ± 0.3 ℃) and freezing (-2.5 ± 0.3 ℃, -5 ± 0.3 ℃) in an artificial room, with 16±2 ℃ of the room temperature at night as the control, to evaluate their physiological effects on ginseng leaf spectral reflectance, photosynthetic characteristics, and chlorophyll fluorescence parameters. We also investigated the mitigating effects of exogenous melatonin on ginseng leaves exposed to chilling and freezing stress. All ginseng leaves died under -5 ℃ freezing stress and the mortality rate reached 25∼57 % under -2.5 ℃ freezing stress, while no plants died under 0 ℃ chilling stress. After -2.5 ℃ and 0 ℃ stress, leaf spectral reflectance in the 750∼1000 nm band was significantly lower than the control; transpiration rate, net photosynthetic rate, intercellular CO2 concentration, and stomatal conductance decreased significantly compared with the control, and there was no significant change in recovery time. The Fv/Fm ratio and qp decreased after low-temperature stress, while NPQ increased. After one week of melatonin application, leaf spectral reflectance in the 600∼650 and 750∼1000 nm bands reflected significant differences between the effects of melatonin application and no application on ginseng leaf chlorophyll content and structure under freezing stress. Ginseng leaf net photosynthetic rate increased by 23.79 % and 4.48 %, while intercellular CO2 concentration increased by 33.49 and 11.83 % under stress at -2.5 °C and 0 °C. The ginseng leaf chlorophyll fluorescence parameter (Fv/Fm) recovered to 0.8 and above in one week after melatonin application, and qp decreased under -2.5 °C and 0 °C stress after melatonin application. Additionally, the NPQ values were 11.44 % and 4.6 % lower in -2.5+MT and 0+MT, respectively, compared to the treatment without MT applied. A sudden drop in temperature to 0 ℃ or even below caused ginseng plant growth inhibition, but melatonin application at a concentration of 100 nmol L−1 had certain mitigating effects on ginseng growth, which provides a theoretical basis and technical support for ginseng production.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.