{"title":"Analysis of plant physiological responses based on leaf color changes through the development and application of a wireless plant sensor","authors":"Kaori Kohzuma , Ko-ichiro Miyamoto","doi":"10.1016/j.sbsr.2024.100688","DOIUrl":null,"url":null,"abstract":"<div><div>Optical sensing has been used to monitor the physiological responses of plants noninvasively and in real-time. In this study, we developed a low-cost plant sensor that performed a spectroscopic measurement at eight wavelengths in the visible region. The sensor head of the system was attached directly to the underside of the leaf, not blocking the light, and eliminating correction work because of the constant distance between the sensor head and the sample. The collected data was shared in the cloud via a network, thereby enabling remote monitoring. The characteristics of the plant sensor as a spectral photometer were validated, with major wavelengths also showing good correlations with those of a conventional spectrometer. The reflectance of 620 nm in this sensor detected plant aging indicator chlorophyll, and 550 nm detected stress indicator xanthophyll. In the field test, these plant physiological responses, seasonal leaf color changes and environmental stresses, were observed remotely. The results indicate that the novel spectroscopic measurement from the underside of the leaf is effective to realize accurate and stable measurement of the plant leaf. The plant sensor can be a powerful tool in the field of agriculture and ecological study by realizing simultaneous, multi-point and remote monitoring at a low cost.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100688"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000709/pdfft?md5=9d2170e85d28f97340ed25ee2d90d415&pid=1-s2.0-S2214180424000709-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optical sensing has been used to monitor the physiological responses of plants noninvasively and in real-time. In this study, we developed a low-cost plant sensor that performed a spectroscopic measurement at eight wavelengths in the visible region. The sensor head of the system was attached directly to the underside of the leaf, not blocking the light, and eliminating correction work because of the constant distance between the sensor head and the sample. The collected data was shared in the cloud via a network, thereby enabling remote monitoring. The characteristics of the plant sensor as a spectral photometer were validated, with major wavelengths also showing good correlations with those of a conventional spectrometer. The reflectance of 620 nm in this sensor detected plant aging indicator chlorophyll, and 550 nm detected stress indicator xanthophyll. In the field test, these plant physiological responses, seasonal leaf color changes and environmental stresses, were observed remotely. The results indicate that the novel spectroscopic measurement from the underside of the leaf is effective to realize accurate and stable measurement of the plant leaf. The plant sensor can be a powerful tool in the field of agriculture and ecological study by realizing simultaneous, multi-point and remote monitoring at a low cost.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.