Mehdi Fasihi , Beatrice Portelli , Luca Cadez , Antonio Tomao , Alex Falcon , Giorgio Alberti , Giuseppe Serra
{"title":"Assessing ensemble models for carbon sequestration and storage estimation in forests using remote sensing data","authors":"Mehdi Fasihi , Beatrice Portelli , Luca Cadez , Antonio Tomao , Alex Falcon , Giorgio Alberti , Giuseppe Serra","doi":"10.1016/j.ecoinf.2024.102828","DOIUrl":null,"url":null,"abstract":"<div><div>Forests play a crucial role in storing much of the world's carbon (C). Accurately estimating C sequestration is essential for addressing and mitigating the impacts of global warming. While many studies have used machine learning models to estimate carbon storage (CS) in forests based on remote sensing data, this research further examines C sequestration (i.e., the annual carbon uptake by trees; CSE). The objectives of this study are two-fold: firstly, to identify the best models for estimating CSE and CS by testing various methods, and secondly, to examine the effect of climatic data and the canopy height model (CHM) on the estimation of CSE. To achieve the first objective, we will compare the performance of fourteen models, including twelve machine learning models, one deep learning model, and an ensemble model that combines the top four independent models. For the second objective, we study the effect of four input configurations: the first is a baseline configuration based solely on attributes extracted from satellite images (Sentinel-2) and geomorphology; the second combines satellite features with climatic data; the third uses a CHM derived from LiDAR instead of climatic data; and the fourth combines all available features: satellite images, climatic data, and CHM. The results show that adding climatic data does not improve the estimation of CSE and CS. However, adding CHM features significantly improves the models' performance for both targets. The implemented ensemble model demonstrated the best performance across all configurations.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"83 ","pages":"Article 102828"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574954124003704/pdfft?md5=eb92d5fb2830af94093c7200733c38bc&pid=1-s2.0-S1574954124003704-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124003704","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Forests play a crucial role in storing much of the world's carbon (C). Accurately estimating C sequestration is essential for addressing and mitigating the impacts of global warming. While many studies have used machine learning models to estimate carbon storage (CS) in forests based on remote sensing data, this research further examines C sequestration (i.e., the annual carbon uptake by trees; CSE). The objectives of this study are two-fold: firstly, to identify the best models for estimating CSE and CS by testing various methods, and secondly, to examine the effect of climatic data and the canopy height model (CHM) on the estimation of CSE. To achieve the first objective, we will compare the performance of fourteen models, including twelve machine learning models, one deep learning model, and an ensemble model that combines the top four independent models. For the second objective, we study the effect of four input configurations: the first is a baseline configuration based solely on attributes extracted from satellite images (Sentinel-2) and geomorphology; the second combines satellite features with climatic data; the third uses a CHM derived from LiDAR instead of climatic data; and the fourth combines all available features: satellite images, climatic data, and CHM. The results show that adding climatic data does not improve the estimation of CSE and CS. However, adding CHM features significantly improves the models' performance for both targets. The implemented ensemble model demonstrated the best performance across all configurations.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.