Jiangyun Zhe , Huan He , Zhanwei Yi , Ziwei Guo , Haisheng Xu , Bin Huang , Xuejun Pan
{"title":"Mechanism and molecular level insight of refractory dissolved organic matter in landfill leachate treated by electroflocculation coupled with ozone","authors":"Jiangyun Zhe , Huan He , Zhanwei Yi , Ziwei Guo , Haisheng Xu , Bin Huang , Xuejun Pan","doi":"10.1016/j.seppur.2024.129812","DOIUrl":null,"url":null,"abstract":"<div><div>Landfill leachate usually contains a substantial content of refractory dissolved organic matter (RDOM), which mainly consists of humic acid and fulvic acid. RDOM easily blocks the membrane pores resulting in membrane fouling when treated using membrane technologies, and it costs abundant chemical regents using advanced oxidation processes. To achieve the economically efficient treatment of RDOM in landfill leachate, this study established the electroflocculation coupled with ozone (EFCO) system. EFCO achieved a higher removal for organic matter than single electroflocculation and ozonation, where RDOM was the main component of organic matter in landfill leachate. The remaining RDOM was decomposed into lots of micromolecule weight and biodegradable proteins and lipids. Ozone improved the removal of dissolved organic matter (DOM) mainly by changing the functional groups on its surface and improving the mechanical strength of flocs to enhance the complexation between flocs and DOM. Cl<sub>2</sub><sup><img>−</sup> and ClO<sup><img></sup> produced in the EFCO system were the main active chlorine species, which enhanced the mineralization of RDOM. The study provides an efficient method for the pretreatment of RDOM in landfill leachate.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"356 ","pages":"Article 129812"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624035512","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Landfill leachate usually contains a substantial content of refractory dissolved organic matter (RDOM), which mainly consists of humic acid and fulvic acid. RDOM easily blocks the membrane pores resulting in membrane fouling when treated using membrane technologies, and it costs abundant chemical regents using advanced oxidation processes. To achieve the economically efficient treatment of RDOM in landfill leachate, this study established the electroflocculation coupled with ozone (EFCO) system. EFCO achieved a higher removal for organic matter than single electroflocculation and ozonation, where RDOM was the main component of organic matter in landfill leachate. The remaining RDOM was decomposed into lots of micromolecule weight and biodegradable proteins and lipids. Ozone improved the removal of dissolved organic matter (DOM) mainly by changing the functional groups on its surface and improving the mechanical strength of flocs to enhance the complexation between flocs and DOM. Cl2− and ClO produced in the EFCO system were the main active chlorine species, which enhanced the mineralization of RDOM. The study provides an efficient method for the pretreatment of RDOM in landfill leachate.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.