A stabilizer-free weak Galerkin mixed finite element method for the biharmonic equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Shanshan Gu, Fuchang Huo, Shicheng Liu
{"title":"A stabilizer-free weak Galerkin mixed finite element method for the biharmonic equation","authors":"Shanshan Gu,&nbsp;Fuchang Huo,&nbsp;Shicheng Liu","doi":"10.1016/j.camwa.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present and study a stabilizer-free weak Galerkin (SFWG) finite element method for the Ciarlet-Raviart mixed form of the biharmonic equation on general polygonal meshes. We utilize the SFWG solutions of the second order elliptic problem to define projection operators and build error equations. Further, using weak functions formed by discontinuous <em>k</em>-th order polynomials, we derive the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></math></span> convergence rate for the exact solution <em>u</em> in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm and the <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> convergence rate in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. Finally, numerical examples support the results reached by the theory.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004231","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present and study a stabilizer-free weak Galerkin (SFWG) finite element method for the Ciarlet-Raviart mixed form of the biharmonic equation on general polygonal meshes. We utilize the SFWG solutions of the second order elliptic problem to define projection operators and build error equations. Further, using weak functions formed by discontinuous k-th order polynomials, we derive the O(hk) convergence rate for the exact solution u in the H1 norm and the O(hk+1) convergence rate in the L2 norm. Finally, numerical examples support the results reached by the theory.
双谐波方程的无稳定子弱 Galerkin 混合有限元法
本文介绍并研究了在一般多边形网格上对双谐方程的 Ciarlet-Raviart 混合形式的无稳定子弱 Galerkin(SFWG)有限元方法。我们利用二阶椭圆问题的 SFWG 解来定义投影算子并建立误差方程。此外,利用由不连续 k 阶多项式形成的弱函数,我们得出了精确解 u 在 H1 规范下的 O(hk) 收敛率和在 L2 规范下的 O(hk+1) 收敛率。最后,数值实例支持了理论得出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信