Fluorinated triphenylamine phthalocyanine @ silica-coated gold nanorods: A photoactivated lysosome escape and targeting mitochondria two-photon probe for imaging-guided photothermal synergistic photodynamic therapy in cancer cells
{"title":"Fluorinated triphenylamine phthalocyanine @ silica-coated gold nanorods: A photoactivated lysosome escape and targeting mitochondria two-photon probe for imaging-guided photothermal synergistic photodynamic therapy in cancer cells","authors":"Yating Shen , Junwen Zhou , Guizhi Chen , Jingtang Wang , Qiuhao Ye , Kuizhi Chen , Liting Qiu , Linying Chen , Yiru Peng","doi":"10.1016/j.jlumin.2024.120900","DOIUrl":null,"url":null,"abstract":"<div><div>The timely evasion of nanomedicines from lysosomes is essential to avert premature degradation under the acidic and hydrolytic conditions characteristic of these cellular compartments. However, the development of effective strategies has been hindered by the complexity of design material and the scarcity of practical methods. In this study, we have synthesized a novel nanoparticle, designated as TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub>. This nanoparticle was prepared by encapsulating near-infrared fluorinated triphenylamine-substituted silicon phthalocyanines (TPA-BPAF-SiPc) within mesoporous silica-coated gold nanorods (AuNR@SiO<sub>2</sub>). TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> functions as a dual-function two-photon probe, facilitating photoactivated lysosome escape and targeting mitochondria. The inherent aggregation-induced emission (AIE) two-photon fluorescence of TPA-BPAF-SiPc is notably bright when encapsulated in AuNR@SiO<sub>2</sub> nanocarriers, a phenomenon not observed in polymer nanocarriers composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG<sub>2000</sub>) or in THF/water mixtures. Upon irradiation, this nanoparticle autonomously escapes from lysosomes and selectively targets mitochondria, a process can be visually monitored in real-time through the two-photon AIE fluorescence of TPA-BPAF-SiPc. Moreover, upon activation, TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> produces a substantial quantity of reactive oxygen species (ROS) and induces hyperthermia effects, showcasing its potential for effective photodynamic therapy (PDT) in conjunction with synergistic hyperthermia. Flow cytometry data corroborate the induction of tumor cell death through both necrosis and apoptosis pathways by TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub>. This study underscores the potential of TPA-BPAF-SiPc@AuNR@SiO<sub>2</sub> as a multifunctional probe capable of enabling lysosome escape, mitochondria targeting, and two-photon fluorescence imaging-guided photothermal synergistic photodynamic therapy, specifically tailored for the treatment of breast cancer.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120900"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004642","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The timely evasion of nanomedicines from lysosomes is essential to avert premature degradation under the acidic and hydrolytic conditions characteristic of these cellular compartments. However, the development of effective strategies has been hindered by the complexity of design material and the scarcity of practical methods. In this study, we have synthesized a novel nanoparticle, designated as TPA-BPAF-SiPc@AuNR@SiO2. This nanoparticle was prepared by encapsulating near-infrared fluorinated triphenylamine-substituted silicon phthalocyanines (TPA-BPAF-SiPc) within mesoporous silica-coated gold nanorods (AuNR@SiO2). TPA-BPAF-SiPc@AuNR@SiO2 functions as a dual-function two-photon probe, facilitating photoactivated lysosome escape and targeting mitochondria. The inherent aggregation-induced emission (AIE) two-photon fluorescence of TPA-BPAF-SiPc is notably bright when encapsulated in AuNR@SiO2 nanocarriers, a phenomenon not observed in polymer nanocarriers composed of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) or in THF/water mixtures. Upon irradiation, this nanoparticle autonomously escapes from lysosomes and selectively targets mitochondria, a process can be visually monitored in real-time through the two-photon AIE fluorescence of TPA-BPAF-SiPc. Moreover, upon activation, TPA-BPAF-SiPc@AuNR@SiO2 produces a substantial quantity of reactive oxygen species (ROS) and induces hyperthermia effects, showcasing its potential for effective photodynamic therapy (PDT) in conjunction with synergistic hyperthermia. Flow cytometry data corroborate the induction of tumor cell death through both necrosis and apoptosis pathways by TPA-BPAF-SiPc@AuNR@SiO2. This study underscores the potential of TPA-BPAF-SiPc@AuNR@SiO2 as a multifunctional probe capable of enabling lysosome escape, mitochondria targeting, and two-photon fluorescence imaging-guided photothermal synergistic photodynamic therapy, specifically tailored for the treatment of breast cancer.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.