Shan He , Min Li , Shiliang Shi , Yi Lu , Deming Wang
{"title":"Experimental study on the influence of rock pore structure on pressure stimulated voltage variations based on nuclear magnetic resonance","authors":"Shan He , Min Li , Shiliang Shi , Yi Lu , Deming Wang","doi":"10.1016/j.enggeo.2024.107736","DOIUrl":null,"url":null,"abstract":"<div><div>Since rocks will generate voltage under load, studying their voltage characteristics is of prime importance for the prevention and control of mine dynamic disasters and the corresponding secondary disasters. In this study, a pressure stimulated voltage (PSV) test system for rock materials under uniaxial compression was constructed to explore the law of PSV variations of rocks. Meanwhile, a nuclear magnetic resonance test system was employed for investigating the influence mechanism of pore structure changes on PSV variations. The following beneficial results were obtained. A “double-peak” phenomenon is observed on the PSV curves of granite and sandstone, whereas, for marble, the phenomenon only appears under high loading rates. The <em>T</em><sub>2</sub> spectra of different types of rock differ greatly. After granite fractures under load, some primary micro-pores are converted into meso-pores and macro-pores, accompanied by the generation of substantial new micro-pores. These micro-pores activate more rock defects (dislocation and grain boundary), resulting in a higher average PSV and peak PSV. After marble fractures, numerous primary micro-pores are transformed into meso-pores and macro-pores, and the proportion of new micro-pores falls. Consequently, its electricity generation capacity weakens. In contrast, sandstone contains a higher proportion of micro-pores. After it fractures, despite the conversion of some micro-pores into meso-pores and macro-pores, abundant micro-pores are generated again, bringing about a relatively high voltage. In short, the changes in overall porosity cannot represent the electricity generation capacity of rock, and the changes in bound cracks exert a profoundly influence on it. The key to the electricity generation capacity of rock lies in the increase and connection of micro-cracks.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"341 ","pages":"Article 107736"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Since rocks will generate voltage under load, studying their voltage characteristics is of prime importance for the prevention and control of mine dynamic disasters and the corresponding secondary disasters. In this study, a pressure stimulated voltage (PSV) test system for rock materials under uniaxial compression was constructed to explore the law of PSV variations of rocks. Meanwhile, a nuclear magnetic resonance test system was employed for investigating the influence mechanism of pore structure changes on PSV variations. The following beneficial results were obtained. A “double-peak” phenomenon is observed on the PSV curves of granite and sandstone, whereas, for marble, the phenomenon only appears under high loading rates. The T2 spectra of different types of rock differ greatly. After granite fractures under load, some primary micro-pores are converted into meso-pores and macro-pores, accompanied by the generation of substantial new micro-pores. These micro-pores activate more rock defects (dislocation and grain boundary), resulting in a higher average PSV and peak PSV. After marble fractures, numerous primary micro-pores are transformed into meso-pores and macro-pores, and the proportion of new micro-pores falls. Consequently, its electricity generation capacity weakens. In contrast, sandstone contains a higher proportion of micro-pores. After it fractures, despite the conversion of some micro-pores into meso-pores and macro-pores, abundant micro-pores are generated again, bringing about a relatively high voltage. In short, the changes in overall porosity cannot represent the electricity generation capacity of rock, and the changes in bound cracks exert a profoundly influence on it. The key to the electricity generation capacity of rock lies in the increase and connection of micro-cracks.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.