Avoiding intersections of given size in finite affine spaces AG(n,2)

IF 0.9 2区 数学 Q2 MATHEMATICS
Benedek Kovács , Zoltán Lóránt Nagy
{"title":"Avoiding intersections of given size in finite affine spaces AG(n,2)","authors":"Benedek Kovács ,&nbsp;Zoltán Lóránt Nagy","doi":"10.1016/j.jcta.2024.105959","DOIUrl":null,"url":null,"abstract":"<div><div>We study the set of intersection sizes of a <em>k</em>-dimensional affine subspace and a point set of size <span><math><mi>m</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></math></span> of the <em>n</em>-dimensional binary affine space <span><math><mrow><mi>AG</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>2</mn><mo>)</mo></math></span>. Following the theme of Erdős, Füredi, Rothschild and T. Sós, we partially determine which local densities in <em>k</em>-dimensional affine subspaces are unavoidable in all <em>m</em>-element point sets in the <em>n</em>-dimensional affine space.</div><div>We also show constructions of point sets for which the intersection sizes with <em>k</em>-dimensional affine subspaces take values from a set of a small size compared to <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span>. These are built up from affine subspaces and so-called subspace evasive sets. Meanwhile, we improve the best known upper bounds on subspace evasive sets and apply results concerning the canonical signed-digit (CSD) representation of numbers.</div><div><em>Keywords</em>: unavoidable, affine subspaces, evasive sets, random methods, canonical signed-digit number system.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105959"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097316524000980/pdfft?md5=62687b67d599290d3f204041642a9a6a&pid=1-s2.0-S0097316524000980-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000980","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the set of intersection sizes of a k-dimensional affine subspace and a point set of size m[0,2n] of the n-dimensional binary affine space AG(n,2). Following the theme of Erdős, Füredi, Rothschild and T. Sós, we partially determine which local densities in k-dimensional affine subspaces are unavoidable in all m-element point sets in the n-dimensional affine space.
We also show constructions of point sets for which the intersection sizes with k-dimensional affine subspaces take values from a set of a small size compared to 2k. These are built up from affine subspaces and so-called subspace evasive sets. Meanwhile, we improve the best known upper bounds on subspace evasive sets and apply results concerning the canonical signed-digit (CSD) representation of numbers.
Keywords: unavoidable, affine subspaces, evasive sets, random methods, canonical signed-digit number system.
在有限仿射空间 AG(n,2) 中避免给定大小的交集
我们研究了 k 维仿射子空间与 n 维二元仿射空间 AG(n,2) 大小为 m∈[0,2n] 的点集的交集大小集。按照厄尔多斯、富雷迪、罗斯柴尔德和 T. 索斯的主题,我们部分确定了 k 维仿射子空间中的哪些局部密度在 n 维仿射空间的所有 m 元素点集中是不可避免的。这些都是由仿射子空间和所谓的子空间规避集建立起来的。同时,我们改进了关于子空间逃避集的已知上界,并应用了关于数字的规范带符号数字(CSD)表示的结果。关键词:不可避免、仿射子空间、逃避集、随机方法、规范带符号数字系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信