Stabilizing Distorted Ductile Semiconductors for Excellent Ductility and Thermoelectric Performance

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yumeng Wang, Qiyong Chen, Pengfei Qiu, Zhiqiang Gao, Shiqi Yang, Lili Xi, Jiong Yang, Xun Shi
{"title":"Stabilizing Distorted Ductile Semiconductors for Excellent Ductility and Thermoelectric Performance","authors":"Yumeng Wang, Qiyong Chen, Pengfei Qiu, Zhiqiang Gao, Shiqi Yang, Lili Xi, Jiong Yang, Xun Shi","doi":"10.1002/adfm.202415008","DOIUrl":null,"url":null,"abstract":"Element doping/alloying is a common strategy to tune the electrical and thermal transports of thermoelectric (TE) materials, but the doping/alloying limit of foreign elements in many TE materials is usually very low, bringing a great challenge to improve the TE performance. In this work, beyond the classic principle of “like dissolves like,” it is found that choosing the compound with a severely distorted lattice and diversified chemical bonding as the matrix also facilitates achieving a high doping/alloying limit. Taking ductile semiconductors as an example, this work shows that gold (Au) element is nearly immiscible in Ag<sub>2</sub>S and Ag<sub>2</sub>Te, but has a relatively high alloying limit in complex Ag<sub>2</sub>S<sub>0.5</sub>Te<sub>0.5</sub> meta-phase. Au in Ag<sub>2</sub>S<sub>0.5</sub>Te<sub>0.5</sub> significantly decreases the carrier concentration and improves the TE performance, but scarcely changes the mechanical properties. Consequently, Ag<sub>1.99</sub>Au<sub>0.01</sub>S<sub>0.5</sub>Te<sub>0.5</sub> demonstrates both a high figure-or-merit of 0.95 at 550 K and extraordinary room-temperature ductility. This work offers an effective and general strategy to develop stabilized doped/alloyed TE materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Element doping/alloying is a common strategy to tune the electrical and thermal transports of thermoelectric (TE) materials, but the doping/alloying limit of foreign elements in many TE materials is usually very low, bringing a great challenge to improve the TE performance. In this work, beyond the classic principle of “like dissolves like,” it is found that choosing the compound with a severely distorted lattice and diversified chemical bonding as the matrix also facilitates achieving a high doping/alloying limit. Taking ductile semiconductors as an example, this work shows that gold (Au) element is nearly immiscible in Ag2S and Ag2Te, but has a relatively high alloying limit in complex Ag2S0.5Te0.5 meta-phase. Au in Ag2S0.5Te0.5 significantly decreases the carrier concentration and improves the TE performance, but scarcely changes the mechanical properties. Consequently, Ag1.99Au0.01S0.5Te0.5 demonstrates both a high figure-or-merit of 0.95 at 550 K and extraordinary room-temperature ductility. This work offers an effective and general strategy to develop stabilized doped/alloyed TE materials.

Abstract Image

稳定变形延展半导体,实现优异的延展性和热电性能
元素掺杂/合金化是调节热电(TE)材料电热传输性能的常用策略,但许多热电材料中外来元素的掺杂/合金化极限通常很低,这给提高热电性能带来了巨大挑战。在这项研究中,除了经典的 "同类相溶 "原理外,研究人员还发现,选择晶格严重畸变、化学键多样化的化合物作为基体,也有利于获得较高的掺杂/合金化极限。以韧性半导体为例,这项研究表明,金(Au)元素几乎不溶于 Ag2S 和 Ag2Te,但在复杂的 Ag2S0.5Te0.5 元相中却具有相对较高的合金化极限。Ag2S0.5Te0.5 中的金元素会显著降低载流子浓度,改善 TE 性能,但几乎不会改变机械性能。因此,Ag1.99Au0.01S0.5Te0.5 不仅在 550 K 时具有 0.95 的高优越性,而且具有非凡的室温延展性。这项研究为开发稳定的掺杂/合金 TE 材料提供了一种有效的通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信