Barium Ferrite with High Anisotropy for Ultra-Broadband Microwave Absorption

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nan Li, Ze Zong, Feng Zhang, Jun-Feng Shi, Zhuo-Yang Li, Hui-Kang Xu, Yi-Fan Zhang, Yue-Ming Chen, Jun Lei, Ling Xu, Yue-Yi Wang, Ding-Xiang Yan, Zhong-Ming Li
{"title":"Barium Ferrite with High Anisotropy for Ultra-Broadband Microwave Absorption","authors":"Nan Li, Ze Zong, Feng Zhang, Jun-Feng Shi, Zhuo-Yang Li, Hui-Kang Xu, Yi-Fan Zhang, Yue-Ming Chen, Jun Lei, Ling Xu, Yue-Yi Wang, Ding-Xiang Yan, Zhong-Ming Li","doi":"10.1002/adfm.202414694","DOIUrl":null,"url":null,"abstract":"In the 5G era, Barium ferrite (BaFe<sub>12</sub>O<sub>19</sub>) has a pivotal position in both fundamental research and frontier applications, such as magnetic recording, microwave absorption, and 2D spintronic devices. Currently, BaFe<sub>12</sub>O<sub>19</sub> is hard to achieve a desirable broadband microwave absorption (MA) because of the underutilized magnetic property limited by Snoek limit, though some efforts have been made by improving the dielectric property to enhance microwave attenuation. The structural design of high anisotropy is deemed an efficient strategy to break the intrinsic Snoek limit of BaFe<sub>12</sub>O<sub>19</sub>. The high-anisotropy 2D nanosheets and 1D nanotubes via ordered growth and assembly can elevate magnetic properties and resonance response. Such optimized spatial structure arrangement can realize ultrawide effective absorption bandwidth (EAB) up to 8.7 and 3.0 GHz, respectively, superior to 0 GHz for conventional BaFe<sub>12</sub>O<sub>19</sub> powders. The morphologies and microstructures of BaFe<sub>12</sub>O<sub>19</sub> effectively trigger shape and magnetic anisotropy, which not only breaks the intrinsic Snoek limit to induce magnetic loss-dominated MA mechanism, but also promotes dielectric-magnetic cooperative loss via improved magnetoelectric mutual inductance effect in 1D/2D structures. These results allow for the management of magnetic properties and controllable structural designs of BaFe<sub>12</sub>O<sub>19</sub>, providing a reliable means toward ultra-convenient preparation of high-anisotropy magnetic materials for more frontier applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414694","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the 5G era, Barium ferrite (BaFe12O19) has a pivotal position in both fundamental research and frontier applications, such as magnetic recording, microwave absorption, and 2D spintronic devices. Currently, BaFe12O19 is hard to achieve a desirable broadband microwave absorption (MA) because of the underutilized magnetic property limited by Snoek limit, though some efforts have been made by improving the dielectric property to enhance microwave attenuation. The structural design of high anisotropy is deemed an efficient strategy to break the intrinsic Snoek limit of BaFe12O19. The high-anisotropy 2D nanosheets and 1D nanotubes via ordered growth and assembly can elevate magnetic properties and resonance response. Such optimized spatial structure arrangement can realize ultrawide effective absorption bandwidth (EAB) up to 8.7 and 3.0 GHz, respectively, superior to 0 GHz for conventional BaFe12O19 powders. The morphologies and microstructures of BaFe12O19 effectively trigger shape and magnetic anisotropy, which not only breaks the intrinsic Snoek limit to induce magnetic loss-dominated MA mechanism, but also promotes dielectric-magnetic cooperative loss via improved magnetoelectric mutual inductance effect in 1D/2D structures. These results allow for the management of magnetic properties and controllable structural designs of BaFe12O19, providing a reliable means toward ultra-convenient preparation of high-anisotropy magnetic materials for more frontier applications.

Abstract Image

用于超宽带微波吸收的高各向异性钡铁氧体
在 5G 时代,钡铁氧体(BaFe12O19)在磁记录、微波吸收和二维自旋电子器件等基础研究和前沿应用领域都具有举足轻重的地位。目前,BaFe12O19 由于受限于 Snoek 限制,磁性能未得到充分利用,因此很难实现理想的宽带微波吸收(MA),尽管人们已经通过改善介电性能来增强微波衰减。高各向异性的结构设计被认为是打破 BaFe12O19 固有 Snoek 限制的有效策略。通过有序生长和组装的高各向异性二维纳米片和一维纳米管可以提高磁特性和共振响应。这种优化的空间结构排列可实现超宽有效吸收带宽(EAB),分别高达 8.7 和 3.0 GHz,优于传统 BaFe12O19 粉末的 0 GHz。BaFe12O19 的形貌和微结构有效地触发了形状和磁各向异性,不仅打破了诱导磁损耗主导 MA 机制的内在 Snoek 限制,还通过改善 1D/2D 结构中的磁电互感效应促进了介电-磁协同损耗。这些结果为管理 BaFe12O19 的磁性能和可控结构设计提供了可能,为超便捷地制备高各向异性磁性材料提供了可靠手段,使其应用于更多前沿领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信