Theory of Classical Electrodynamics with Topologically Quantized Singularities as Electric Charges

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Bruno Golik, Dario Jukić, Hrvoje Buljan
{"title":"Theory of Classical Electrodynamics with Topologically Quantized Singularities as Electric Charges","authors":"Bruno Golik, Dario Jukić, Hrvoje Buljan","doi":"10.1002/lpor.202400217","DOIUrl":null,"url":null,"abstract":"A theory of classical electrodynamics, where the only admissible electric charges are topological singularities in the electromagnetic field, is formulated. Charge quantization is accounted by the Chern theorem, such that Dirac magnetic monopoles are not needed. The theory allows positive and negative charges of equal magnitude, where the sign of the charge corresponds to the chirality of the topological singularity. Given the trajectory <span data-altimg=\"/cms/asset/15013c81-0815-4d11-ab20-d4d836f19136/lpor202400217-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"218\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202400217-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"bold w left parenthesis t right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"bold\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202400217:lpor202400217-math-0001\" display=\"inline\" location=\"graphic/lpor202400217-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"bold w left parenthesis t right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"bold\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\" mathvariant=\"bold\">w</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>${\\bf w}(t)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the singularity, one can calculate electric and magnetic fields identical to those produced by Maxwell's equations for a moving point charge, apart from a multiplicative constant factor related to electron charge and vacuum permittivity. The theory is based on the relativistic Weyl equation in frequency-wavevector space, with eigenstates comprising the position, velocity, and acceleration of the singularity, and eigenvalues defining the retarded position of the charge. From the eigenstates, one calculates the Berry connection and the Berry curvatures, and identifies the curvatures as electric and magnetic fields.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400217","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A theory of classical electrodynamics, where the only admissible electric charges are topological singularities in the electromagnetic field, is formulated. Charge quantization is accounted by the Chern theorem, such that Dirac magnetic monopoles are not needed. The theory allows positive and negative charges of equal magnitude, where the sign of the charge corresponds to the chirality of the topological singularity. Given the trajectory w(t)${\bf w}(t)$ of the singularity, one can calculate electric and magnetic fields identical to those produced by Maxwell's equations for a moving point charge, apart from a multiplicative constant factor related to electron charge and vacuum permittivity. The theory is based on the relativistic Weyl equation in frequency-wavevector space, with eigenstates comprising the position, velocity, and acceleration of the singularity, and eigenvalues defining the retarded position of the charge. From the eigenstates, one calculates the Berry connection and the Berry curvatures, and identifies the curvatures as electric and magnetic fields.

Abstract Image

拓扑量化奇点为电荷的经典电动力学理论
本文提出了一种经典电动力学理论,其中唯一可接受的电荷是电磁场中的拓扑奇点。电荷量子化由切尔定理解释,因此不需要狄拉克磁单极子。该理论允许等量的正负电荷,电荷的符号与拓扑奇异性的奇异性相对应。给定奇点的轨迹 w(t)${\bf w}(t)$,除了一个与电子电荷和真空介电常数有关的乘法常数因子外,我们可以计算出与麦克斯韦方程对运动点电荷产生的电场和磁场相同的电场和磁场。该理论基于频率-波矢量空间中的相对论韦尔方程,其特征状态包括奇点的位置、速度和加速度,特征值定义了电荷的迟滞位置。根据特征状态,可以计算贝里连接和贝里曲率,并将曲率识别为电场和磁场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信