{"title":"Theory of Classical Electrodynamics with Topologically Quantized Singularities as Electric Charges","authors":"Bruno Golik, Dario Jukić, Hrvoje Buljan","doi":"10.1002/lpor.202400217","DOIUrl":null,"url":null,"abstract":"A theory of classical electrodynamics, where the only admissible electric charges are topological singularities in the electromagnetic field, is formulated. Charge quantization is accounted by the Chern theorem, such that Dirac magnetic monopoles are not needed. The theory allows positive and negative charges of equal magnitude, where the sign of the charge corresponds to the chirality of the topological singularity. Given the trajectory <span data-altimg=\"/cms/asset/15013c81-0815-4d11-ab20-d4d836f19136/lpor202400217-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"218\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202400217-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"bold w left parenthesis t right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"bold\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202400217:lpor202400217-math-0001\" display=\"inline\" location=\"graphic/lpor202400217-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"bold w left parenthesis t right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"bold\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\" mathvariant=\"bold\">w</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">t</mi><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>${\\bf w}(t)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of the singularity, one can calculate electric and magnetic fields identical to those produced by Maxwell's equations for a moving point charge, apart from a multiplicative constant factor related to electron charge and vacuum permittivity. The theory is based on the relativistic Weyl equation in frequency-wavevector space, with eigenstates comprising the position, velocity, and acceleration of the singularity, and eigenvalues defining the retarded position of the charge. From the eigenstates, one calculates the Berry connection and the Berry curvatures, and identifies the curvatures as electric and magnetic fields.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400217","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A theory of classical electrodynamics, where the only admissible electric charges are topological singularities in the electromagnetic field, is formulated. Charge quantization is accounted by the Chern theorem, such that Dirac magnetic monopoles are not needed. The theory allows positive and negative charges of equal magnitude, where the sign of the charge corresponds to the chirality of the topological singularity. Given the trajectory of the singularity, one can calculate electric and magnetic fields identical to those produced by Maxwell's equations for a moving point charge, apart from a multiplicative constant factor related to electron charge and vacuum permittivity. The theory is based on the relativistic Weyl equation in frequency-wavevector space, with eigenstates comprising the position, velocity, and acceleration of the singularity, and eigenvalues defining the retarded position of the charge. From the eigenstates, one calculates the Berry connection and the Berry curvatures, and identifies the curvatures as electric and magnetic fields.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.