Liang Liang, Yulong Ye, Heyi Yang, Qinan Mao, Yang Ding, Fang Chen, Meijiao Liu, Jiasong Zhong
{"title":"Degree of Crystal Structure Distortion-Induced Tunable LiGaO2 Long Persistent Luminescence for Optical Information Encryption","authors":"Liang Liang, Yulong Ye, Heyi Yang, Qinan Mao, Yang Ding, Fang Chen, Meijiao Liu, Jiasong Zhong","doi":"10.1021/acsami.4c11163","DOIUrl":null,"url":null,"abstract":"Tunable long persistent luminescence (LPL) phosphor materials have great potential for optoelectronic cryptographic applications. However, the mainstream techniques of modulating LPL generally have the characteristics of complex preparation processes, demanding crystal field environments, or expensive dopant ions, which restrict large-scale commercial application. Herein, we develop a simple, high-efficiency, and low-cost strategy to optimize the LPL of LiGaO<sub>2</sub>(LGO):Cu<sup>2+</sup> by changing the sintering time to regulate the degree of crystal structure distortion. The Cu<sup>2+</sup> as charge compensation will substantially enhance the emission intensity of LGO by a factor of 11.02 originating from the appropriate ionic size and coordination mode. Besides, the LPL time of LGO:Cu<sup>2+</sup> can be extended effectively to 2 h by adjusting the sintering temperature and time (900 °C@24 h). The extension mechanism is that Li and Ga can be substituted for each other more easily and induce crystal structure distortion due to the special crystal structure of LGO, resulting in an optimal trap concentration in LGO:Cu<sup>2+</sup>. Thus, our findings provide a simple way to modulate long persistent luminescence and further consider their potential impact on optical information encryption.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11163","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tunable long persistent luminescence (LPL) phosphor materials have great potential for optoelectronic cryptographic applications. However, the mainstream techniques of modulating LPL generally have the characteristics of complex preparation processes, demanding crystal field environments, or expensive dopant ions, which restrict large-scale commercial application. Herein, we develop a simple, high-efficiency, and low-cost strategy to optimize the LPL of LiGaO2(LGO):Cu2+ by changing the sintering time to regulate the degree of crystal structure distortion. The Cu2+ as charge compensation will substantially enhance the emission intensity of LGO by a factor of 11.02 originating from the appropriate ionic size and coordination mode. Besides, the LPL time of LGO:Cu2+ can be extended effectively to 2 h by adjusting the sintering temperature and time (900 °C@24 h). The extension mechanism is that Li and Ga can be substituted for each other more easily and induce crystal structure distortion due to the special crystal structure of LGO, resulting in an optimal trap concentration in LGO:Cu2+. Thus, our findings provide a simple way to modulate long persistent luminescence and further consider their potential impact on optical information encryption.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.