{"title":"Theoretical Modeling of the Exceptional GRB 221009A Afterglow","authors":"Luca Foffano, Marco Tavani and Giovanni Piano","doi":"10.3847/2041-8213/ad76a3","DOIUrl":null,"url":null,"abstract":"The extraordinary gamma-ray burst GRB 221009A provides a great opportunity to investigate the enigmatic origin and evolution of gamma-ray bursts (GRBs). However, the complexity of the observations associated with this GRB provides significant challenges to developing a theoretical modeling in a coherent framework. In this paper, we present a theoretical interpretation of the GRB 221009A afterglow within the relativistic fireball scenario, aiming to describe the broadband data set with a consistent model evolution. We find that the adiabatic fireball evolution in the slow-cooling regime provides a viable scenario in good agreement with observations. Crucial to our analysis is the set of simultaneous GeV and TeV gamma-ray data obtained by AGILE and LHAASO during the early afterglow phases. Having successfully modeled as inverse Compton emission the high-energy spectral and lightcurve properties of the afterglow up to 104 s, we extend our model to later times when also optical and X-ray data are available. This approach results in a coherent physical framework that successfully describes all observed properties of the afterglow up to very late times, approximately 106 s. Our model requires time-variable microphysical parameters, with a moderately increasing efficiency εe of a few percent for transferring the shock energy to radiating particles and a decreasing efficiency for magnetic field generation εB in the range 10−5–10−7. Fitting the detailed multifrequency spectral data across the afterglow provides a unique test of our model.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad76a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The extraordinary gamma-ray burst GRB 221009A provides a great opportunity to investigate the enigmatic origin and evolution of gamma-ray bursts (GRBs). However, the complexity of the observations associated with this GRB provides significant challenges to developing a theoretical modeling in a coherent framework. In this paper, we present a theoretical interpretation of the GRB 221009A afterglow within the relativistic fireball scenario, aiming to describe the broadband data set with a consistent model evolution. We find that the adiabatic fireball evolution in the slow-cooling regime provides a viable scenario in good agreement with observations. Crucial to our analysis is the set of simultaneous GeV and TeV gamma-ray data obtained by AGILE and LHAASO during the early afterglow phases. Having successfully modeled as inverse Compton emission the high-energy spectral and lightcurve properties of the afterglow up to 104 s, we extend our model to later times when also optical and X-ray data are available. This approach results in a coherent physical framework that successfully describes all observed properties of the afterglow up to very late times, approximately 106 s. Our model requires time-variable microphysical parameters, with a moderately increasing efficiency εe of a few percent for transferring the shock energy to radiating particles and a decreasing efficiency for magnetic field generation εB in the range 10−5–10−7. Fitting the detailed multifrequency spectral data across the afterglow provides a unique test of our model.