{"title":"Modeling Subduction With Extremely Fast Trench Retreat","authors":"Diandian Peng, Dave R. Stegman","doi":"10.1029/2024JB029240","DOIUrl":null,"url":null,"abstract":"<p>The Tonga-Kermadec subduction zone exhibits the fastest observed trench retreat and convergence near its northern end. However, a paradox exists: despite the rapid trench retreat, the Tonga slab maintains a relatively steep dip angle above 400 km depth. The slab turns flat around 400 km, then steepening again until encountering a stagnant segment near 670 km. Despite its significance for understanding slab dynamics, no existing numerical model has successfully demonstrated how such a distinct slab morphology can be generated under the fast convergence. Here we run subduction models that successfully reproduce the slab geometries while incorporating the observed subduction rate. We use a hybrid velocity boundary condition, imposing velocities on the arc and subducting plate while allowing the overriding plate to respond freely. This approach is crucial for achieving a good match between the modeled and observed Tonga slab. The results explain how the detailed slab structure is highly sensitive to physical parameters including the seafloor age and the mantle viscosity. Notably, a nonlinear rheology, where dislocation creep reduces upper mantle viscosity under strong mantle flow, is essential. The weakened upper mantle allows for a faster slab sinking rate, which explains the large dip angle. Our findings highlight the utilizing rheological parameters that lead to extreme viscosity variations within numerical models to achieve an accurate representation of complex subduction systems like the Tonga-Kermadec zone. Our study opens new avenues for further study of ocean-ocean subduction systems, advancing our understanding of their role in shaping regional and global tectonics.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029240","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029240","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Tonga-Kermadec subduction zone exhibits the fastest observed trench retreat and convergence near its northern end. However, a paradox exists: despite the rapid trench retreat, the Tonga slab maintains a relatively steep dip angle above 400 km depth. The slab turns flat around 400 km, then steepening again until encountering a stagnant segment near 670 km. Despite its significance for understanding slab dynamics, no existing numerical model has successfully demonstrated how such a distinct slab morphology can be generated under the fast convergence. Here we run subduction models that successfully reproduce the slab geometries while incorporating the observed subduction rate. We use a hybrid velocity boundary condition, imposing velocities on the arc and subducting plate while allowing the overriding plate to respond freely. This approach is crucial for achieving a good match between the modeled and observed Tonga slab. The results explain how the detailed slab structure is highly sensitive to physical parameters including the seafloor age and the mantle viscosity. Notably, a nonlinear rheology, where dislocation creep reduces upper mantle viscosity under strong mantle flow, is essential. The weakened upper mantle allows for a faster slab sinking rate, which explains the large dip angle. Our findings highlight the utilizing rheological parameters that lead to extreme viscosity variations within numerical models to achieve an accurate representation of complex subduction systems like the Tonga-Kermadec zone. Our study opens new avenues for further study of ocean-ocean subduction systems, advancing our understanding of their role in shaping regional and global tectonics.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.