Large, Negative Atmospheric Carbon Monoxide Clumped Isotope Values Result From Kinetic Isotope Fractionation, Tracing OH• Reactivity

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-09-23 DOI:10.1029/2023AV000922
Gregory A. Henkes, Philip F. Place, John E. Mak
{"title":"Large, Negative Atmospheric Carbon Monoxide Clumped Isotope Values Result From Kinetic Isotope Fractionation, Tracing OH• Reactivity","authors":"Gregory A. Henkes,&nbsp;Philip F. Place,&nbsp;John E. Mak","doi":"10.1029/2023AV000922","DOIUrl":null,"url":null,"abstract":"<p>Because of its global abundance and reactivity with hydroxyl radicals (OH•), tropospheric carbon monoxide indirectly impacts the lifetimes of other OH•-reactive gases, in particular methane and reactive hydrocarbons. The origin and chemistry of atmospheric CO have been studied using stable isotopes. Both <sup>13</sup>CO and C<sup>18</sup>O undergo isotopic fractionation during its main chemical loss reaction, CO + OH•. The kinetic isotope effect (KIE) for <sup>13</sup>CO is mass dependent, with a value of ∼5‰; <sup>12</sup>CO reacts faster than <sup>13</sup>CO with OH. Whereas C<sup>18</sup>O + OH• exhibits an inversely mass dependent KIE ∼−10‰. We hypothesize these KIEs result in a relative depletion of <sup>13</sup>C<sup>18</sup>O, a CO clumped isotope. To test this, we collected CO from air samples on Long Island, NY, and discovered a −3 to −8‰ difference in the clumped isotope ratio, Δ<sub>31</sub>, relative to a random distribution of <sup>13</sup>C and <sup>18</sup>O in CO. A clear negative trend between [CO] and Δ<sub>31</sub> is driven by two factors: (a) the atmospheric addition of CO from either a primary or secondary source with a Δ<sub>31</sub> of ∼0‰ and (b) the continuing reaction of CO with OH•, leaving the remaining CO pool relatively depleted in <sup>13</sup>C<sup>18</sup>O. This is analogous to the mechanism that determines CO Δ<sup>17</sup>O values. This study is among the first to show clumped isotope fractionation resulting from atmospheric chemistry and not thermal equilibration, which may inform the identification of clumped isotope KIEs in other atmospheric trace gases. These first Δ<sub>31</sub> observations motivate future experimental and observational studies targeted at characterizing the clumped isotopes of CO sources, background CO, and experimentally fractionated CO.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 5","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV000922","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV000922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Because of its global abundance and reactivity with hydroxyl radicals (OH•), tropospheric carbon monoxide indirectly impacts the lifetimes of other OH•-reactive gases, in particular methane and reactive hydrocarbons. The origin and chemistry of atmospheric CO have been studied using stable isotopes. Both 13CO and C18O undergo isotopic fractionation during its main chemical loss reaction, CO + OH•. The kinetic isotope effect (KIE) for 13CO is mass dependent, with a value of ∼5‰; 12CO reacts faster than 13CO with OH. Whereas C18O + OH• exhibits an inversely mass dependent KIE ∼−10‰. We hypothesize these KIEs result in a relative depletion of 13C18O, a CO clumped isotope. To test this, we collected CO from air samples on Long Island, NY, and discovered a −3 to −8‰ difference in the clumped isotope ratio, Δ31, relative to a random distribution of 13C and 18O in CO. A clear negative trend between [CO] and Δ31 is driven by two factors: (a) the atmospheric addition of CO from either a primary or secondary source with a Δ31 of ∼0‰ and (b) the continuing reaction of CO with OH•, leaving the remaining CO pool relatively depleted in 13C18O. This is analogous to the mechanism that determines CO Δ17O values. This study is among the first to show clumped isotope fractionation resulting from atmospheric chemistry and not thermal equilibration, which may inform the identification of clumped isotope KIEs in other atmospheric trace gases. These first Δ31 observations motivate future experimental and observational studies targeted at characterizing the clumped isotopes of CO sources, background CO, and experimentally fractionated CO.

Abstract Image

大气中一氧化碳的大量负同位素值来自于动力学同位素分馏,可追踪 OH- 反应性
对流层中的一氧化碳由于其全球丰度和与羟基自由基(OH-)的反应性,间接影响了其他与羟基自由基反应的气体,特别是甲烷和活性碳氢化合物的寿命。利用稳定同位素对大气中一氧化碳的来源和化学性质进行了研究。在一氧化碳的主要化学损耗反应 CO + OH- 过程中,13CO 和 C18O 都会发生同位素分馏。13CO 的动力学同位素效应(KIE)与质量有关,其值为∼5‰;12CO 与 OH 的反应比 13CO 快。而 C18O + OH- 的 KIE 与质量成反比,为 10‰。我们假设这些 KIE 会导致 13C18O(一种 CO 团块同位素)的相对耗竭。为了验证这一点,我们从纽约长岛的空气样本中采集了一氧化碳,发现相对于一氧化碳中 13C 和 18O 的随机分布,团块同位素比Δ31 存在-3 至-8‰的差异。CO]和 Δ31 之间明显的负相关趋势是由两个因素驱动的:(a) 大气中增加了来自原生源或Δ31 为 ∼0‰ 的次生源的 CO;(b) CO 与 OH- 的持续反应,使得剩余 CO 池中的 13C18O 相对贫乏。这与决定 CO Δ17O 值的机制类似。这项研究首次显示了由大气化学而不是热平衡引起的团块同位素分馏,这可能为确定其他大气痕量气体中的团块同位素 KIEs 提供了参考。这些首次观测到的Δ31 激发了未来针对一氧化碳源、背景一氧化碳和实验分馏一氧化碳的团块同位素特征的实验和观测研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信