{"title":"Non-parametric analysis for the dark matter density evolution","authors":"Z.C. Santana , R.F.L. Holanda , R. Silva","doi":"10.1016/j.astropartphys.2024.103052","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate a potential departure in the standard dark matter density evolution law, <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>d</mi><mi>m</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>d</mi><mi>m</mi><mo>,</mo><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. The method involves considering a deformed evolution model, denoted as <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>d</mi><mi>m</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>d</mi><mi>m</mi><mo>,</mo><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, and searching for the presence of any deviation (<span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>≠</mo><mn>1</mn></mrow></math></span>). As one may see, <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> is a general function that parametrizes a possible digression from the standard law. We use data of baryon acoustic oscillations, type I Supernovae luminosity distances, and galaxy cluster gas mass fraction observations to reconstruct <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> through an approach that is not dependent on the cosmological model or the so-called Gaussian process regression. Unlike previous works, it enables us to investigate a possible deviation without using a specific function to describe it. We have obtained <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>, the standard model scenario, within <span><math><mrow><mn>2</mn><mi>σ</mi></mrow></math></span> c.l. in all the considered cases.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"165 ","pages":"Article 103052"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524001294","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate a potential departure in the standard dark matter density evolution law, . The method involves considering a deformed evolution model, denoted as , and searching for the presence of any deviation (). As one may see, is a general function that parametrizes a possible digression from the standard law. We use data of baryon acoustic oscillations, type I Supernovae luminosity distances, and galaxy cluster gas mass fraction observations to reconstruct through an approach that is not dependent on the cosmological model or the so-called Gaussian process regression. Unlike previous works, it enables us to investigate a possible deviation without using a specific function to describe it. We have obtained , the standard model scenario, within c.l. in all the considered cases.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.