{"title":"Investigation on instability mechanism and control of abandoned roadways in coal pillars recovery face: A case study","authors":"","doi":"10.1016/j.undsp.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>The abandoned roadways (ARs) in front of the longwall face catastrophic instability will seriously hamper mining progress, which is a complicated process related to the stress environment, the roadway section, and the mechanical properties of the surrounding rock. The cusp catastrophe theory is employed to establish a state identification model for the irregular coal pillar-roof system (CPRS) formed by the ARs and re-mining entries. To begin, the state discrimination equation (<em>Δp</em>) for the gradual CPRS is derived, and the critical value at which the system transitions into an unstable state under quasi-static conditions is determined. The results indicated that when 16.49 m ≤ <em>L</em> ≤ 22.63 m (<em>L</em> denotes the equivalent span of the intersection roof) and 0 < <em>R</em><sub>e</sub> ≤ 2.61 m (<em>R</em><sub>e</sub> denotes the width of the elastic zone within the triangular coal pillar), the triangular CPRS is inherently unstable. Similarly, for trapezoidal CPRS configurations where the length <em>L</em><sub>m</sub> (the span of the right-angled trapezoid roof in the propulsion direction) varies from 4.0 to 12.60 m, the system is unstable as well. Subsequently, the model was further enhanced by accounting for the impact of the <em>P</em><sub>c</sub> (advance stress increment load), where a critical criterion for the catastrophic instability of the CPRS was proposed, which represented the external energy required to transition the CPRS from an unstable state to catastrophic instability in different mining stages. After that, the stability degree of the irregular coal pillar was categorized, and a coupling zoning control technology was applied to CPR operations. Field monitoring results demonstrated the effectiveness of the zoning control technology, providing valuable guidance for similar mining practices.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000801/pdfft?md5=da5b193741033ceb8356d3acd410aa05&pid=1-s2.0-S2467967424000801-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000801","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The abandoned roadways (ARs) in front of the longwall face catastrophic instability will seriously hamper mining progress, which is a complicated process related to the stress environment, the roadway section, and the mechanical properties of the surrounding rock. The cusp catastrophe theory is employed to establish a state identification model for the irregular coal pillar-roof system (CPRS) formed by the ARs and re-mining entries. To begin, the state discrimination equation (Δp) for the gradual CPRS is derived, and the critical value at which the system transitions into an unstable state under quasi-static conditions is determined. The results indicated that when 16.49 m ≤ L ≤ 22.63 m (L denotes the equivalent span of the intersection roof) and 0 < Re ≤ 2.61 m (Re denotes the width of the elastic zone within the triangular coal pillar), the triangular CPRS is inherently unstable. Similarly, for trapezoidal CPRS configurations where the length Lm (the span of the right-angled trapezoid roof in the propulsion direction) varies from 4.0 to 12.60 m, the system is unstable as well. Subsequently, the model was further enhanced by accounting for the impact of the Pc (advance stress increment load), where a critical criterion for the catastrophic instability of the CPRS was proposed, which represented the external energy required to transition the CPRS from an unstable state to catastrophic instability in different mining stages. After that, the stability degree of the irregular coal pillar was categorized, and a coupling zoning control technology was applied to CPR operations. Field monitoring results demonstrated the effectiveness of the zoning control technology, providing valuable guidance for similar mining practices.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.