Wave front sets of nilpotent Lie group representations

IF 1.7 2区 数学 Q1 MATHEMATICS
Julia Budde, Tobias Weich
{"title":"Wave front sets of nilpotent Lie group representations","authors":"Julia Budde,&nbsp;Tobias Weich","doi":"10.1016/j.jfa.2024.110684","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a nilpotent, connected, simply connected Lie group with Lie algebra <span><math><mi>g</mi></math></span>, and <em>π</em> a unitary representation of <em>G</em>. In this article we prove that the wave front set of <em>π</em> coincides with the asymptotic cone of the orbital support of <em>π</em>, i.e. <span><math><mrow><mi>WF</mi></mrow><mo>(</mo><mi>π</mi><mo>)</mo><mo>=</mo><mrow><mi>AC</mi></mrow><mo>(</mo><msub><mrow><mo>⋃</mo></mrow><mrow><mi>σ</mi><mo>∈</mo><mrow><mi>supp</mi></mrow><mo>(</mo><mi>π</mi><mo>)</mo></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>⊂</mo><mi>i</mi><msup><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> is the coadjoint Kirillov orbit associated to the irreducible unitary representation <span><math><mi>σ</mi><mo>∈</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 1","pages":"Article 110684"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003720/pdfft?md5=83be36def1c70aa00f9f837a0f297c17&pid=1-s2.0-S0022123624003720-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003720","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g, and π a unitary representation of G. In this article we prove that the wave front set of π coincides with the asymptotic cone of the orbital support of π, i.e. WF(π)=AC(σsupp(π)Oσ), where Oσig is the coadjoint Kirillov orbit associated to the irreducible unitary representation σGˆ.
零能李群代表的波前集
本文将证明 π 的波前集与π 的轨道支持的渐近锥重合,即 WF(π)=AC(⋃σ∈supp(π)Oσ, 其中 Oσig⁎ 是 coadointe 的 coadointe。即 WF(π)=AC(⋃σ∈supp(π)Oσ), 其中 Oσ⊂ig⁎ 是与不可减单元表示 σ∈Gˆ 相关联的共轭基里洛夫轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信