Ensemble surrogate modeling of advective-dispersive transport with intraparticle diffusion model for column-leaching test

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Amirhossein Ershadi, Michael Finkel, Binlong Liu, Olaf A. Cirpka, Peter Grathwohl
{"title":"Ensemble surrogate modeling of advective-dispersive transport with intraparticle diffusion model for column-leaching test","authors":"Amirhossein Ershadi,&nbsp;Michael Finkel,&nbsp;Binlong Liu,&nbsp;Olaf A. Cirpka,&nbsp;Peter Grathwohl","doi":"10.1016/j.jconhyd.2024.104423","DOIUrl":null,"url":null,"abstract":"<div><div>Column-leaching tests are a common approach for assessing the leaching behavior and resulting environmental risks of contaminated soils and waste materials, which are frequently reused for various construction purposes. The observed breakthrough curves of the contaminants are influenced by the complex dynamics of solute transport and kinetic inter-phase mass transfer. Disentangling these interactions necessitates numerical models. However, inverse modeling and sensitivity analysis can be time-consuming, especially when sorption kinetics are explicitly described by intraparticle diffusion, which requires discretizing the domain both in the flow direction along the column axis and inside the grains. To circumvent the need for such computationally intensive models, we have developed two different ensemble surrogate models. These models employ two separate ensemble methods: random forest stacking and inverse-distance weighted interpolation. Each method is applied to base surrogate models that cover different parts of the parameter space. The base surrogate models use the method of Extremely randomized Trees (ExtraTrees). The defined parameter range is based on the German standard for column-leaching tests. To optimize the base surrogate models, we utilized adaptive-sampling methods based on three distinct infill criteria: maximizing the expected improvement, staying within a certain Mahalanobis distance to the best estimate (both for exploitation), and maximizing the standard deviation (for exploration). The ensemble surrogate model demonstrates excellent performance in emulating the behavior of the original numerical model, with a relative root mean squared error of 0.09. We applied our proposed ensemble surrogate model to estimate the complete posterior parameter distribution using Simulation-Based Inference, specifically Neural Posterior Estimation, to determine the full parameter distribution conditioned on copper-leaching data from two different soils. Samples drawn from the posterior distribution align perfectly with the observed data for both the surrogate and original models.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016977222400127X/pdfft?md5=6d4cab59d29b967fe9ea34b7771fa9f3&pid=1-s2.0-S016977222400127X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016977222400127X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Column-leaching tests are a common approach for assessing the leaching behavior and resulting environmental risks of contaminated soils and waste materials, which are frequently reused for various construction purposes. The observed breakthrough curves of the contaminants are influenced by the complex dynamics of solute transport and kinetic inter-phase mass transfer. Disentangling these interactions necessitates numerical models. However, inverse modeling and sensitivity analysis can be time-consuming, especially when sorption kinetics are explicitly described by intraparticle diffusion, which requires discretizing the domain both in the flow direction along the column axis and inside the grains. To circumvent the need for such computationally intensive models, we have developed two different ensemble surrogate models. These models employ two separate ensemble methods: random forest stacking and inverse-distance weighted interpolation. Each method is applied to base surrogate models that cover different parts of the parameter space. The base surrogate models use the method of Extremely randomized Trees (ExtraTrees). The defined parameter range is based on the German standard for column-leaching tests. To optimize the base surrogate models, we utilized adaptive-sampling methods based on three distinct infill criteria: maximizing the expected improvement, staying within a certain Mahalanobis distance to the best estimate (both for exploitation), and maximizing the standard deviation (for exploration). The ensemble surrogate model demonstrates excellent performance in emulating the behavior of the original numerical model, with a relative root mean squared error of 0.09. We applied our proposed ensemble surrogate model to estimate the complete posterior parameter distribution using Simulation-Based Inference, specifically Neural Posterior Estimation, to determine the full parameter distribution conditioned on copper-leaching data from two different soils. Samples drawn from the posterior distribution align perfectly with the observed data for both the surrogate and original models.
针对柱浸试验的平流-分散输运与颗粒内扩散模型的集合代用模型
柱浸试验是评估受污染土壤和废料的浸出行为和由此产生的环境风险的常用方法,这些土壤和废料经常被重新用于各种建筑用途。所观察到的污染物突破曲线受到溶质迁移和相间动力学传质的复杂动态影响。要厘清这些相互作用,就必须建立数值模型。然而,反演建模和灵敏度分析可能非常耗时,尤其是当吸附动力学明确由颗粒内扩散来描述时,这就需要对沿柱轴流动方向和颗粒内部的域进行离散化处理。为了避免使用这种计算密集型模型,我们开发了两种不同的集合代用模型。这些模型采用了两种不同的集合方法:随机森林堆积法和反距离加权插值法。每种方法都适用于涵盖参数空间不同部分的基础代理模型。基础代用模型使用的是极随机化树(ExtraTrees)方法。所定义的参数范围基于德国的柱浸出测试标准。为了优化基础代用模型,我们采用了基于三种不同填充标准的自适应采样方法:最大化预期改进、与最佳估计值保持一定的马哈拉诺比斯距离(均用于开发)以及最大化标准偏差(用于探索)。集合代用模型在模拟原始数值模型行为方面表现出色,相对均方根误差为 0.09。我们应用所提出的集合代理模型,通过基于模拟的推理(特别是神经后验估计)来估计完整的后验参数分布,从而确定以两种不同土壤的铜浸出数据为条件的完整参数分布。对于代用模型和原始模型而言,从后验分布中提取的样本与观测数据完全一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信