Transcrustal magmatic systems in NE China: Insights from Early Cretaceous metaluminous–peraluminous–peralkaline rock associations in the southern Great Xing’an Range
Li Tian , Jun Gou , Deyou Sun , Duo Zhang , Zhao Feng , Zhonghua He
{"title":"Transcrustal magmatic systems in NE China: Insights from Early Cretaceous metaluminous–peraluminous–peralkaline rock associations in the southern Great Xing’an Range","authors":"Li Tian , Jun Gou , Deyou Sun , Duo Zhang , Zhao Feng , Zhonghua He","doi":"10.1016/j.gr.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><div>The generation and evolution of crustal-scale magmatic systems are important in revealing the continental crust differentiation. In the Bayangeer-Aliwula area of Inner Mongolia, metaluminous–peraluminous–peralkaline rock assemblages provide a rare opportunity to evaluate Early Cretaceous magmatic systems. This study presents new geochemical data, including whole-rock and zircon geochemistry, zircon U–Pb dating, and Hf–O isotopic analysis of rocks formed between 132 and 121 Ma. The metaluminous rocks exhibit low SiO<sub>2</sub> (55.35–65.65 wt%), low Rb/Sr (0.08–0.24) and (La/Yb)<sub>N</sub> (4.88–7.58) ratios, and positive ε<sub>Hf</sub>(t) values (+4.9 to +8.7). These features, along with enrichment in large-ion lithophile elements and depletion in Nb and Ta, suggest formation via partial melting of fluid-metasomatised lithospheric mantle. By contrast, peraluminous rocks have high SiO<sub>2</sub> (69.37–80.58 wt%), a high differentiation index (DI = 88–95), and Fe-index (0.84–0.95), resembling highly fractionated I-type granites. They show high Rb/Sr (0.77–3.35) and (La/Yb)<sub>N</sub> (5.79–22.75) ratios, and positive ε<sub>Hf</sub>(t) values (+6.7 to +10.8), combined with the modelling results, indicating origin from partial melting of K-rich mafic lower crust followed by magma fractionation. Peralkaline rocks display typical ferroan A-type granite characteristics (Zr + Nb + Ce + Y = 906–4292 ppm; Fe-index = 0.96–0.99), with high SiO<sub>2</sub> (74.02–77.50 wt%), high Rb/Sr (6.17–121.38), and (La/Yb)<sub>N</sub> ratios (2.19–17.72), and positive ε<sub>Hf</sub>(t) values (+3.1 to +9.6). Zircon geochemistry characteristics suggest that peralkaline and peraluminous felsic melts are different batches extracted from the same magma reservoir. Further analysis, including hyperbola diagrams and zircon oxygen isotope compositions, suggests peralkaline magma formation through the mixing of altered oceanic crust fluids and peraluminous melts after melt extraction. During Early Cretaceous, the transcrustal magmatic system provides a reasonable explanation for the petrogenesis of various contemporaneous rocks in the study area in southern Great Xing’an Range.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"136 ","pages":"Pages 183-201"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24002703","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The generation and evolution of crustal-scale magmatic systems are important in revealing the continental crust differentiation. In the Bayangeer-Aliwula area of Inner Mongolia, metaluminous–peraluminous–peralkaline rock assemblages provide a rare opportunity to evaluate Early Cretaceous magmatic systems. This study presents new geochemical data, including whole-rock and zircon geochemistry, zircon U–Pb dating, and Hf–O isotopic analysis of rocks formed between 132 and 121 Ma. The metaluminous rocks exhibit low SiO2 (55.35–65.65 wt%), low Rb/Sr (0.08–0.24) and (La/Yb)N (4.88–7.58) ratios, and positive εHf(t) values (+4.9 to +8.7). These features, along with enrichment in large-ion lithophile elements and depletion in Nb and Ta, suggest formation via partial melting of fluid-metasomatised lithospheric mantle. By contrast, peraluminous rocks have high SiO2 (69.37–80.58 wt%), a high differentiation index (DI = 88–95), and Fe-index (0.84–0.95), resembling highly fractionated I-type granites. They show high Rb/Sr (0.77–3.35) and (La/Yb)N (5.79–22.75) ratios, and positive εHf(t) values (+6.7 to +10.8), combined with the modelling results, indicating origin from partial melting of K-rich mafic lower crust followed by magma fractionation. Peralkaline rocks display typical ferroan A-type granite characteristics (Zr + Nb + Ce + Y = 906–4292 ppm; Fe-index = 0.96–0.99), with high SiO2 (74.02–77.50 wt%), high Rb/Sr (6.17–121.38), and (La/Yb)N ratios (2.19–17.72), and positive εHf(t) values (+3.1 to +9.6). Zircon geochemistry characteristics suggest that peralkaline and peraluminous felsic melts are different batches extracted from the same magma reservoir. Further analysis, including hyperbola diagrams and zircon oxygen isotope compositions, suggests peralkaline magma formation through the mixing of altered oceanic crust fluids and peraluminous melts after melt extraction. During Early Cretaceous, the transcrustal magmatic system provides a reasonable explanation for the petrogenesis of various contemporaneous rocks in the study area in southern Great Xing’an Range.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.