Lena Vilà-Vilardell , Alan J. Tepley , Anna Sala , Pere Casals , Sharon M. Hood
{"title":"Long-term sensitivity of ponderosa pine axial resin ducts to harvesting and prescribed burning","authors":"Lena Vilà-Vilardell , Alan J. Tepley , Anna Sala , Pere Casals , Sharon M. Hood","doi":"10.1016/j.foreco.2024.122301","DOIUrl":null,"url":null,"abstract":"<div><div>Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., <em>Dendroctonus</em>, <em>Ips</em>), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth has been studied, less is known about their impact on resin-based defenses. We measured axial resin ducts in the earlywood and latewood of ponderosa pines (<em>Pinus ponderosa</em>) in western Montana, USA, 20 years before and after the implementation of restoration treatments, with the aim to elucidate changes in the yearly and interannual investment in resin duct defenses following treatments and their sensitivity to climate. Two experiments were established in 1992: a moderate thinning and a retention shelterwood, with 35 % and 57 % basal area reduction, respectively. Each experiment comprised four treatments with three replicates per treatment: cutting only, cutting followed by prescribed burning in either spring or fall or under wet or dry duff moisture conditions, and an untreated control. Cutting treatments stimulated a long-term, sustained increase in resin duct production, more pronounced in the earlywood, which we attribute to a higher availability of resources due to reduced tree density. Prescribed burning following cutting induced a short-term increase in resin ducts, likely aiding in the compartmentalization of fire-killed cambium and enhancing the resistance of fire-injured trees to bark beetle attack. However, the fire-induced spike in duct production was not related to the degree of crown scorch. Treatments had little effect on climate-defense relationships, as ducts remained positively correlated to winter precipitation and, though less significantly, negatively correlated to spring maximum temperature. Our findings show that by reducing stand density, forest restoration treatments induce the synthesis of resin ducts, which are key in mitigating vulnerability of ponderosa pine to mountain pine beetle (<em>D. ponderosae</em>) attacks, thus promoting forest resilience to multiple disturbances.</div></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":"572 ","pages":"Article 122301"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724006133","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., Dendroctonus, Ips), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth has been studied, less is known about their impact on resin-based defenses. We measured axial resin ducts in the earlywood and latewood of ponderosa pines (Pinus ponderosa) in western Montana, USA, 20 years before and after the implementation of restoration treatments, with the aim to elucidate changes in the yearly and interannual investment in resin duct defenses following treatments and their sensitivity to climate. Two experiments were established in 1992: a moderate thinning and a retention shelterwood, with 35 % and 57 % basal area reduction, respectively. Each experiment comprised four treatments with three replicates per treatment: cutting only, cutting followed by prescribed burning in either spring or fall or under wet or dry duff moisture conditions, and an untreated control. Cutting treatments stimulated a long-term, sustained increase in resin duct production, more pronounced in the earlywood, which we attribute to a higher availability of resources due to reduced tree density. Prescribed burning following cutting induced a short-term increase in resin ducts, likely aiding in the compartmentalization of fire-killed cambium and enhancing the resistance of fire-injured trees to bark beetle attack. However, the fire-induced spike in duct production was not related to the degree of crown scorch. Treatments had little effect on climate-defense relationships, as ducts remained positively correlated to winter precipitation and, though less significantly, negatively correlated to spring maximum temperature. Our findings show that by reducing stand density, forest restoration treatments induce the synthesis of resin ducts, which are key in mitigating vulnerability of ponderosa pine to mountain pine beetle (D. ponderosae) attacks, thus promoting forest resilience to multiple disturbances.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.