Independence, matching and packing coloring of the iterated Mycielskian of graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Kamal Dliou
{"title":"Independence, matching and packing coloring of the iterated Mycielskian of graphs","authors":"Kamal Dliou","doi":"10.1016/j.dam.2024.09.015","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote respectively the independence, matching, 2-matching and packing chromatic numbers of a graph <span><math><mi>G</mi></math></span>. A well-known construction on graphs, called the Mycielskian of a graph, transforms any <span><math><mi>k</mi></math></span>-chromatic graph <span><math><mi>G</mi></math></span> into a <span><math><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-chromatic graph <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> having an equal clique number to <span><math><mi>G</mi></math></span>. The <span><math><mi>t</mi></math></span>th iterated Mycielskian of a graph <span><math><mi>G</mi></math></span>, denoted <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is obtained by iteratively repeating the Mycielskian transformation <span><math><mi>t</mi></math></span> times. In this paper, we give <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Then we show that for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mo>max</mo><mrow><mo>{</mo><mrow><mo>|</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>α</mi><mrow><mo>(</mo><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. We characterize for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, the connected graphs having <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> and those having <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Afterwards, we give <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Then we show that for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is a König–Egerváry graph if and only if <span><math><mi>G</mi></math></span> does not have a perfect 2-matching. Later, we investigate the packing chromatic number of <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We present several sharp upper and lower bounds for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, some in terms of the number of iterations <span><math><mi>t</mi></math></span>, the order of <span><math><mi>G</mi></math></span>, the <span><math><mi>k</mi></math></span>-independence number with <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> can be computed in polynomial time if <span><math><mi>G</mi></math></span> has a diameter at most 2. Recently, in Bidine et al. (2023) the authors studied diameter two graphs having <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi></mrow></msup><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. Here we fully characterize the diameter two graphs for which this equality holds. They also asked a question about the growth of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We show that for <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> cannot be upper bounded by a function of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> alone. In addition, we discuss the realizable values for <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and characterize the graphs having the least possible <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 22-33"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let α(G), ν(G), ν2(G) and χρ(G) denote respectively the independence, matching, 2-matching and packing chromatic numbers of a graph G. A well-known construction on graphs, called the Mycielskian of a graph, transforms any k-chromatic graph G into a (k+1)-chromatic graph M(G) having an equal clique number to G. The tth iterated Mycielskian of a graph G, denoted Mt(G), is obtained by iteratively repeating the Mycielskian transformation t times. In this paper, we give α(M(G)) in terms of ν2(G). Then we show that for all t2, α(Mt(G))=max{|Mt1(G)|,2t1α(M(G))}. We characterize for all t1, the connected graphs having α(Mt(G))=|Mt1(G)| and those having α(Mt(G))=2tα(G). Afterwards, we give ν(Mt(G)) and ν2(Mt(G)) for all t1 in terms of ν2(G). Then we show that for all t1, Mt(G) is a König–Egerváry graph if and only if G does not have a perfect 2-matching. Later, we investigate the packing chromatic number of Mt(G). We present several sharp upper and lower bounds for χρ(Mt(G)), some in terms of the number of iterations t, the order of G, the k-independence number with k{1,2,3} and χρ(G). We show that χρ(Mt(G)) can be computed in polynomial time if G has a diameter at most 2. Recently, in Bidine et al. (2023) the authors studied diameter two graphs having χρ(Mt(G))=2tχρ(G) for t1. Here we fully characterize the diameter two graphs for which this equality holds. They also asked a question about the growth of χρ(Mt(G)) in terms of χρ(G). We show that for t1, χρ(Mt(G)) cannot be upper bounded by a function of χρ(G) alone. In addition, we discuss the realizable values for χρ(Mt(G)) and characterize the graphs having the least possible χρ(Mt(G)).
图的迭代密西尔斯基的独立性、匹配和包装着色
让 α(G)、ν(G)、ν2(G) 和 χρ(G) 分别表示图 G 的独立色度数、匹配色度数、2-匹配色度数和打包色度数。图的第 t 次迭代 Mycielskian(记为 Mt(G))是通过重复进行 t 次 Mycielskian 变换得到的。在本文中,我们用 ν2(G)给出了 α(M(G))。然后我们证明,对于所有 t≥2,α(Mt(G))=max{|Mt-1(G)|,2t-1α(M(G))}。对于所有 t≥1,我们描述了具有 α(Mt(G))=|Mt-1(G)|的连通图和具有 α(Mt(G))=2tα(G)的连通图的特征。然后,我们给出所有 t≥1 时的ν(Mt(G))和ν2(Mt(G))。然后我们证明,对于所有 t≥1,当且仅当 G 没有完美的 2 匹配时,Mt(G) 是一个柯尼希-埃格瓦里图。随后,我们将研究 Mt(G) 的包装色度数。我们为 χρ(Mt(G))提出了几个尖锐的上界和下界,其中一些是以迭代次数 t、G 的阶、k∈{1,2,3} 的 k-independence 数和 χρ(G)来表示的。我们证明,如果 G 的直径最大为 2,χρ(Mt(G)) 可以在多项式时间内计算。最近,在 Bidine 等人 (2023) 的文章中,作者研究了 t≥1 时具有 χρ(Mt(G))=2tχρ(G)的直径为 2 的图。他们还提出了一个关于以 χρ(G) 表示的 χρ(Mt(G))增长的问题。我们证明,对于 t≥1,χρ(Mt(G)) 不可能仅由χρ(G) 的函数上界。此外,我们还讨论了 χρ(Mt(G))的可实现值,并描述了具有最小可能 χρ(Mt(G))的图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信