Jun Zhang , Fangying Song , Xiaofeng Yang , Yu Zhang
{"title":"Error analysis of the explicit-invariant energy quadratization (EIEQ) numerical scheme for solving the Allen–Cahn equation","authors":"Jun Zhang , Fangying Song , Xiaofeng Yang , Yu Zhang","doi":"10.1016/j.cam.2024.116224","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116224"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004734","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the error analysis of a first-order, time-discrete scheme for solving the nonlinear Allen–Cahn equation. The discretization of the nonlinear potential is achieved through the EIEQ method, which employs an auxiliary variable to linearize the nonlinear double-well potential effectively. The energy stability of the scheme is demonstrated, along with its decoupled type implementation. Under a set of reasonable assumptions related to boundedness and continuity, an extensive error analysis is performed. This analysis results in the establishment of and error bounds for the numerical solution. Furthermore, a variety of numerical examples are conducted to illustrate the accuracy of the EIEQ scheme, highlighting its effectiveness in addressing complex dynamical systems governed by the Allen–Cahn equation.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.