Dena Shamsollahi , Osama Moselhi , Khashayar Khorasani
{"title":"Data integration using deep learning and real-time locating system (RTLS) for automated construction progress monitoring and reporting","authors":"Dena Shamsollahi , Osama Moselhi , Khashayar Khorasani","doi":"10.1016/j.autcon.2024.105778","DOIUrl":null,"url":null,"abstract":"<div><div>The shift towards automated progress monitoring using new technologies for efficient delivery of construction projects has received significant attention. The application of vision-based techniques for object recognition and real-time locating system (RTLS) for object localization has been widely studied. However, a single technology cannot provide complete information needed to determine the status of tracked elements on a job site. This paper presents an integrated method for progress monitoring through recognition and localization of elements in construction sites. This method integrates data derived from a deep learning model and Ultra-wideband (UWB) system, and reports each element's ID, location, visual data and capture time. Such information is essential for project managers to assess progress on site. The method is validated in a mechanical room, a challenging environment for RTLS and object recognition models due to signal interferences and occlusions. The findings suggest further research on improving integrated methods for efficient progress reporting.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926580524005144/pdfft?md5=a2adecd5ce30de2f9f8d66dd155b3629&pid=1-s2.0-S0926580524005144-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005144","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The shift towards automated progress monitoring using new technologies for efficient delivery of construction projects has received significant attention. The application of vision-based techniques for object recognition and real-time locating system (RTLS) for object localization has been widely studied. However, a single technology cannot provide complete information needed to determine the status of tracked elements on a job site. This paper presents an integrated method for progress monitoring through recognition and localization of elements in construction sites. This method integrates data derived from a deep learning model and Ultra-wideband (UWB) system, and reports each element's ID, location, visual data and capture time. Such information is essential for project managers to assess progress on site. The method is validated in a mechanical room, a challenging environment for RTLS and object recognition models due to signal interferences and occlusions. The findings suggest further research on improving integrated methods for efficient progress reporting.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.