Lidan Xiao , Yang Chen , Di Liu , Boris F. Minaev , Bing Yan
{"title":"Formation of S2 species in different redox states by radiative association in atomic and ionic collisions","authors":"Lidan Xiao , Yang Chen , Di Liu , Boris F. Minaev , Bing Yan","doi":"10.1016/j.ascom.2024.100877","DOIUrl":null,"url":null,"abstract":"<div><div>Radiative associations for formations of the S<sub>2</sub>, S<sub>2</sub><sup>+</sup> and S<sub>2</sub><sup>-</sup> molecular species during atomic collisions S(<sup>3</sup>P<sub>u</sub>) + S(<sup>3</sup>P<sub>u</sub>), S(<sup>3</sup>P<sub>u</sub>) + S<sup>+</sup>(<sup>4</sup>S<sub>u</sub>) and S(<sup>3</sup>P<sub>u</sub>) + S<sup>-</sup>(<sup>2</sup>P<sub>u</sub>) are investigated. The adiabatic potential energy curves (PECs) and spin-allowed transition dipole moments (TDMs) are obtained by the internally contracted multireference configuration interaction method with the Davidson correction (icMRCI+Q). A number of PECs and TDMs are chosen to calculate the corresponding cross-sections and rate coefficients of radiative associations. The calculated rate coefficients are valid for the temperatures from 100 to 16000 K and fitted to the analytical function according to the three-parameter Arrhenius–Kooij formula. These results indicate that transitions originating in the ΔΛ=0 selection rule are the main contributors for the radiative association process. The present study can elucidate the further understanding the radiative association, which plays an important role in the formation and evolution of the S<sub>2</sub>, S<sub>2</sub><sup>+</sup> and S<sub>2</sub><sup>-</sup> molecules.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"49 ","pages":"Article 100877"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000921","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radiative associations for formations of the S2, S2+ and S2- molecular species during atomic collisions S(3Pu) + S(3Pu), S(3Pu) + S+(4Su) and S(3Pu) + S-(2Pu) are investigated. The adiabatic potential energy curves (PECs) and spin-allowed transition dipole moments (TDMs) are obtained by the internally contracted multireference configuration interaction method with the Davidson correction (icMRCI+Q). A number of PECs and TDMs are chosen to calculate the corresponding cross-sections and rate coefficients of radiative associations. The calculated rate coefficients are valid for the temperatures from 100 to 16000 K and fitted to the analytical function according to the three-parameter Arrhenius–Kooij formula. These results indicate that transitions originating in the ΔΛ=0 selection rule are the main contributors for the radiative association process. The present study can elucidate the further understanding the radiative association, which plays an important role in the formation and evolution of the S2, S2+ and S2- molecules.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.