Toughness and distance spectral radius in graphs involving minimum degree

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jing Lou , Ruifang Liu , Jinlong Shu
{"title":"Toughness and distance spectral radius in graphs involving minimum degree","authors":"Jing Lou ,&nbsp;Ruifang Liu ,&nbsp;Jinlong Shu","doi":"10.1016/j.dam.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>toughness</em> <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>min</mi><mrow><mo>{</mo><mfrac><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mrow><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mrow></mfrac><mo>:</mo><mi>S</mi><mspace></mspace><mtext>is a cut set of vertices in</mtext><mspace></mspace><mi>G</mi><mo>}</mo></mrow></mrow></math></span> for <span><math><mrow><mi>G</mi><mo>≇</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>.</mo></mrow></math></span> The concept of toughness initially proposed by Chvátal in 1973, which serves as a simple way to measure how tightly various pieces of a graph hold together. A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>t</mi></math></span><em>-tough</em> if <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>t</mi><mo>.</mo></mrow></math></span> It is very interesting to investigate the relations between toughness and eigenvalues of graphs. Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] provided sufficient conditions in terms of the spectral radius for a graph to be 1-tough with minimum degree <span><math><mi>δ</mi></math></span> and <span><math><mi>t</mi></math></span>-tough with <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> being an integer, respectively. By using some typical distance spectral techniques and structural analysis, we in this paper present a sufficient condition based on the distance spectral radius to guarantee a graph to be 1-tough with minimum degree <span><math><mrow><mi>δ</mi><mo>.</mo></mrow></math></span> Moreover, we also prove sufficient conditions with respect to the distance spectral radius for a graph to be <span><math><mi>t</mi></math></span>-tough, where <span><math><mi>t</mi></math></span> or <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span> is a positive integer.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The toughness τ(G)=min{|S|c(GS):Sis a cut set of vertices inG} for GKn. The concept of toughness initially proposed by Chvátal in 1973, which serves as a simple way to measure how tightly various pieces of a graph hold together. A graph G is called t-tough if τ(G)t. It is very interesting to investigate the relations between toughness and eigenvalues of graphs. Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] provided sufficient conditions in terms of the spectral radius for a graph to be 1-tough with minimum degree δ and t-tough with t1 being an integer, respectively. By using some typical distance spectral techniques and structural analysis, we in this paper present a sufficient condition based on the distance spectral radius to guarantee a graph to be 1-tough with minimum degree δ. Moreover, we also prove sufficient conditions with respect to the distance spectral radius for a graph to be t-tough, where t or 1t is a positive integer.
涉及最小度的图中的韧性和距离谱半径
G≇Kn 的韧性 τ(G)=min{|S|c(G-S):Sis a cut set of vertices inG} 。韧性的概念最初是由 Chvátal 于 1973 年提出的,它是一种简单的方法来衡量图中各个部分的紧密程度。如果 τ(G)≥t ,则图 G 称为 t-韧性图。研究图的韧性和特征值之间的关系非常有趣。Fan、Lin 和 Lu [European J. Combin.通过使用一些典型的距离谱技术和结构分析,我们在本文中提出了一个基于距离谱半径的充分条件,以保证图是最小度为 δ 的 1-韧图。此外,我们还证明了关于距离谱半径的充分条件,以保证图是 t-韧图,其中 t 或 1t 是正整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信