Xinyu Kang , Yanlong Li , Ye Zhang , Ning Ma , Lifeng Wen
{"title":"Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (MemAE-GAN)","authors":"Xinyu Kang , Yanlong Li , Ye Zhang , Ning Ma , Lifeng Wen","doi":"10.1016/j.autcon.2024.105794","DOIUrl":null,"url":null,"abstract":"<div><div>Anomaly detection of concrete dam from deformation monitoring data is significant for dam safety evaluation. Existing anomaly detection models face challenges in identifying minor abnormal values and detection accuracy. This paper integrates the memory-augmented deep autoencoder (MemAE) with the generative adversarial network (GAN) to construct the unsupervised MemAE-GAN model, which leverages MemAE's precision in modeling and the GAN's adversarial training capability to highlight minor abnormal values, thereby significantly enhancing both sensitivity and accuracy in anomaly detection. Experimental results indicate that the MemAE-GAN model consistently achieved anomaly detection accuracy exceeding 0.97, considerably outperforming other comparative models. This model provides a highly accurate approach for deformation anomaly detection and lays the groundwork for subsequent research on deformation prediction and early warning. Future research could explore the algorithms to analyze the causes of abnormal values and establish the anomaly detection framework.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105794"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005302","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly detection of concrete dam from deformation monitoring data is significant for dam safety evaluation. Existing anomaly detection models face challenges in identifying minor abnormal values and detection accuracy. This paper integrates the memory-augmented deep autoencoder (MemAE) with the generative adversarial network (GAN) to construct the unsupervised MemAE-GAN model, which leverages MemAE's precision in modeling and the GAN's adversarial training capability to highlight minor abnormal values, thereby significantly enhancing both sensitivity and accuracy in anomaly detection. Experimental results indicate that the MemAE-GAN model consistently achieved anomaly detection accuracy exceeding 0.97, considerably outperforming other comparative models. This model provides a highly accurate approach for deformation anomaly detection and lays the groundwork for subsequent research on deformation prediction and early warning. Future research could explore the algorithms to analyze the causes of abnormal values and establish the anomaly detection framework.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.