On the improvement of Hölder seminorms in superquadratic Hamilton-Jacobi equations

IF 1.7 2区 数学 Q1 MATHEMATICS
Marco Cirant
{"title":"On the improvement of Hölder seminorms in superquadratic Hamilton-Jacobi equations","authors":"Marco Cirant","doi":"10.1016/j.jfa.2024.110692","DOIUrl":null,"url":null,"abstract":"<div><div>We show in this paper that maximal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-regularity for time-dependent viscous Hamilton-Jacobi equations with unbounded right-hand side and superquadratic <em>γ</em>-growth in the gradient holds in the full range <span><math><mi>q</mi><mo>&gt;</mo><mo>(</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>)</mo><mfrac><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>γ</mi></mrow></mfrac></math></span>. Our approach is based on new <span><math><mfrac><mrow><mi>γ</mi><mo>−</mo><mn>2</mn></mrow><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>-Hölder estimates, which are consequence of the decay at small scales of suitable nonlinear space and time Hölder quotients. This is obtained by proving suitable oscillation estimates, that also give in turn some Liouville type results for entire solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110692"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002212362400380X/pdfft?md5=9f67759f78f3d63a96e6edeef4bf4034&pid=1-s2.0-S002212362400380X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400380X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show in this paper that maximal Lq-regularity for time-dependent viscous Hamilton-Jacobi equations with unbounded right-hand side and superquadratic γ-growth in the gradient holds in the full range q>(N+2)γ1γ. Our approach is based on new γ2γ1-Hölder estimates, which are consequence of the decay at small scales of suitable nonlinear space and time Hölder quotients. This is obtained by proving suitable oscillation estimates, that also give in turn some Liouville type results for entire solutions.
论超二次汉密尔顿-雅可比方程中霍尔德半矩的改进
我们在本文中证明,对于右边无约束且梯度超二次方γ增长的时变粘性汉密尔顿-雅可比方程,最大 Lq 不规则性在整个 q>(N+2)γ-1γ 范围内成立。我们的方法基于新的γ-2γ-1-霍尔德估计,这是合适的非线性空间和时间霍尔德商在小尺度上衰减的结果。这是通过证明合适的振荡估计而获得的,这些振荡估计还反过来给出了全解的一些利乌维尔式结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信