{"title":"Deformable surface reconstruction via Riemannian metric preservation","authors":"Oriol Barbany, Adrià Colomé, Carme Torras","doi":"10.1016/j.cviu.2024.104155","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating the pose of an object from a monocular image is a fundamental inverse problem in computer vision. Due to its ill-posed nature, solving this problem requires incorporating deformation priors. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a reliable and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach for inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and achieves state-of-the-art performance without the need for offline training. Being a method that performs per-frame optimization, our method can refine its estimates, contrary to those based on performing a single inference step. Despite enforcing differential geometry constraints at each update, our approach is the fastest of all the tested optimization-based methods.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077314224002364/pdfft?md5=e37118b164489f2910fb59a519a86d29&pid=1-s2.0-S1077314224002364-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002364","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating the pose of an object from a monocular image is a fundamental inverse problem in computer vision. Due to its ill-posed nature, solving this problem requires incorporating deformation priors. In practice, many materials do not perceptibly shrink or extend when manipulated, constituting a reliable and well-known prior. Mathematically, this translates to the preservation of the Riemannian metric. Neural networks offer the perfect playground to solve the surface reconstruction problem as they can approximate surfaces with arbitrary precision and allow the computation of differential geometry quantities. This paper presents an approach for inferring continuous deformable surfaces from a sequence of images, which is benchmarked against several techniques and achieves state-of-the-art performance without the need for offline training. Being a method that performs per-frame optimization, our method can refine its estimates, contrary to those based on performing a single inference step. Despite enforcing differential geometry constraints at each update, our approach is the fastest of all the tested optimization-based methods.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems