The isochronal phase of stochastic PDE and integral equations: Metastability and other properties

IF 2.4 2区 数学 Q1 MATHEMATICS
Zachary P. Adams , James MacLaurin
{"title":"The isochronal phase of stochastic PDE and integral equations: Metastability and other properties","authors":"Zachary P. Adams ,&nbsp;James MacLaurin","doi":"10.1016/j.jde.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>We study the dynamics of waves, oscillations, and other spatio-temporal patterns in stochastic evolution systems, including SPDE and stochastic integral equations. Representing a given pattern as a smooth, stable invariant manifold of the deterministic dynamics, we reduce the stochastic dynamics to a finite dimensional SDE on this manifold using the isochronal phase. The isochronal phase is defined by mapping a neighborhood of the manifold onto the manifold itself, analogous to the isochronal phase defined for finite-dimensional oscillators by A.T. Winfree and J. Guckenheimer. We then determine a probability measure that indicates the average position of the stochastic perturbation of the pattern/wave as it wanders over the manifold. It is proved that this probability measure is accurate on time-scales greater than <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>σ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, but less than <span><math><mi>O</mi><mo>(</mo><mi>exp</mi><mo>⁡</mo><mo>(</mo><mi>C</mi><msup><mrow><mi>σ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo><mo>)</mo></math></span>, where <span><math><mi>σ</mi><mo>≪</mo><mn>1</mn></math></span> is the amplitude of the stochastic perturbation. Moreover, using this measure, we determine the expected velocity of the difference between the deterministic and stochastic motion on the manifold.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005746","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of waves, oscillations, and other spatio-temporal patterns in stochastic evolution systems, including SPDE and stochastic integral equations. Representing a given pattern as a smooth, stable invariant manifold of the deterministic dynamics, we reduce the stochastic dynamics to a finite dimensional SDE on this manifold using the isochronal phase. The isochronal phase is defined by mapping a neighborhood of the manifold onto the manifold itself, analogous to the isochronal phase defined for finite-dimensional oscillators by A.T. Winfree and J. Guckenheimer. We then determine a probability measure that indicates the average position of the stochastic perturbation of the pattern/wave as it wanders over the manifold. It is proved that this probability measure is accurate on time-scales greater than O(σ2), but less than O(exp(Cσ2)), where σ1 is the amplitude of the stochastic perturbation. Moreover, using this measure, we determine the expected velocity of the difference between the deterministic and stochastic motion on the manifold.
随机 PDE 和积分方程的等时相:可代谢性及其他特性
我们研究随机演化系统(包括 SPDE 和随机积分方程)中波浪、振荡和其他时空模式的动力学。将给定模式表示为确定性动力学的平滑稳定不变流形,我们利用等时相将随机动力学简化为该流形上的有限维 SDE。等时相的定义是将流形的一个邻域映射到流形本身,类似于 A.T. Winfree 和 J. Guckenheimer 为有限维振荡器定义的等时相。然后,我们确定了一个概率度量,它表示图案/波在流形上游荡时随机扰动的平均位置。事实证明,在时间尺度大于 O(σ-2),但小于 O(exp(Cσ-2))(其中 σ≪1 是随机扰动的振幅)的情况下,这种概率度量是准确的。此外,利用这一量度,我们还能确定流形上确定运动与随机运动之差的预期速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信