{"title":"Normalized solutions for a nonlinear Dirac equation","authors":"Vittorio Coti Zelati , Margherita Nolasco","doi":"10.1016/j.jde.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the existence of a normalized, stationary solution <span><math><mi>ψ</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with frequency <span><math><mi>ω</mi><mo>></mo><mn>0</mn></math></span> of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form<span><span><span><math><mi>F</mi><mo>(</mo><mi>Ψ</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>0</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mi>b</mi><mo>|</mo><mo>(</mo><mi>Ψ</mi><mo>,</mo><msup><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>γ</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>Ψ</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span></span></span> with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>]</mo></math></span>, <span><math><mi>b</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span> sufficiently small. Here <span><math><msup><mrow><mi>γ</mi></mrow><mrow><mi>i</mi></mrow></msup></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>3</mn></math></span> are the <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Dirac's matrices.</div><div>We find the solution as a critical point of a suitable functional restricted to the unit sphere in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, and <em>ω</em> turns out to be the corresponding Lagrange multiplier.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022039624006144/pdfft?md5=cb690464016ef3752322a3f835e48f7c&pid=1-s2.0-S0022039624006144-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006144","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the existence of a normalized, stationary solution with frequency of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form with , and sufficiently small. Here , are the Dirac's matrices.
We find the solution as a critical point of a suitable functional restricted to the unit sphere in , and ω turns out to be the corresponding Lagrange multiplier.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics