Min Kyung Kwon , Jun-Woo Kim , In Sung Lee , DongHyun Lee
{"title":"Development of granular neutral amino acids with calcium hydroxide composition","authors":"Min Kyung Kwon , Jun-Woo Kim , In Sung Lee , DongHyun Lee","doi":"10.1016/j.apt.2024.104645","DOIUrl":null,"url":null,"abstract":"<div><div>Amino acid granules for animal feed are typically produced by fermentation, evaporation and fluidized bed granulation with drying processes. Evaporation is one of the most energy-efficient processes to remove water. However, a fluidized bed granulation process with drying is a relatively energy-inefficient process to remove water. Improving solubility of amino acid is good strategy to increase the maximum achievable concentration in the evaporation process. An increase in the maximum achievable concentration can lead to energy saving by increasing the contribution of water removal by evaporation. In this study, a manufacturing method of neutral amino acid granule for feed additive using calcium hydroxide addition was developed. Since solubility of neutral amino acid is increased with increasing amount of calcium hydroxide, adding calcium hydroxide is a useful method to improve energy efficiency of the evaporation process. It was found that adding calcium hydroxide reduced steam consumption levels of tryptophan, threonine, valine and isoleucine by 8.0%, 28.0%, 26.3% and 15.6%, respectively.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104645"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003212","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amino acid granules for animal feed are typically produced by fermentation, evaporation and fluidized bed granulation with drying processes. Evaporation is one of the most energy-efficient processes to remove water. However, a fluidized bed granulation process with drying is a relatively energy-inefficient process to remove water. Improving solubility of amino acid is good strategy to increase the maximum achievable concentration in the evaporation process. An increase in the maximum achievable concentration can lead to energy saving by increasing the contribution of water removal by evaporation. In this study, a manufacturing method of neutral amino acid granule for feed additive using calcium hydroxide addition was developed. Since solubility of neutral amino acid is increased with increasing amount of calcium hydroxide, adding calcium hydroxide is a useful method to improve energy efficiency of the evaporation process. It was found that adding calcium hydroxide reduced steam consumption levels of tryptophan, threonine, valine and isoleucine by 8.0%, 28.0%, 26.3% and 15.6%, respectively.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)