Zhongzhao Ding , Zhixin Ma , Shixue Hu , Shuang Dai , Qiyue Zhang , Xiao Min , Jinyuan Huang , Wen Wen , Changyong Zhou , Xinnan Fang , Tianqi Ji , Lingfeng Qin
{"title":"Paleoclimate evolution of the Middle Triassic Guanling Formation from South China and its significance for the preservation of the Luoping biota","authors":"Zhongzhao Ding , Zhixin Ma , Shixue Hu , Shuang Dai , Qiyue Zhang , Xiao Min , Jinyuan Huang , Wen Wen , Changyong Zhou , Xinnan Fang , Tianqi Ji , Lingfeng Qin","doi":"10.1016/j.gloplacha.2024.104588","DOIUrl":null,"url":null,"abstract":"<div><div>The Middle Triassic is regarded as an important period of biotic recovery after the end-Permian mass extinction, of which the Middle Triassic Luoping biota represents a full recovery of marine ecosystem. However, the research on the relationship between biotic recovery and environmental evolution in the Middle Triassic remains poorly understood. To investigate this issue, microfacies analysis and multiple geochemical proxies (Al, Ti, Th, Sc, and ∑REY) of an Anisian (Middle Triassic) succession (the Member II of the Guanling Formation, Leniduo section, South China) yielding the Luoping biota are carried out. Five sedimentary facies are identified through field investigation and microfacies analysis: open platform, restricted platform, tidal flat, shoal and intra-platform depression. According to the changes of multiple geochemical proxies, this section can be divided into five stages. A sudden facies transition from open platform to intra-platform depression, and high contents of Al, Ti, Sc, Th, and ∑REY in stage IV indicate a rapid sea-level rise and detrital input increase, coinciding with the preservation of the Luoping biota. This evidence suggest that enhanced continental weathering caused by global warming, global sea level rise, and frequent regional volcanic activities promoted the death and preservation of the Luoping biota.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"242 ","pages":"Article 104588"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124002352","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Middle Triassic is regarded as an important period of biotic recovery after the end-Permian mass extinction, of which the Middle Triassic Luoping biota represents a full recovery of marine ecosystem. However, the research on the relationship between biotic recovery and environmental evolution in the Middle Triassic remains poorly understood. To investigate this issue, microfacies analysis and multiple geochemical proxies (Al, Ti, Th, Sc, and ∑REY) of an Anisian (Middle Triassic) succession (the Member II of the Guanling Formation, Leniduo section, South China) yielding the Luoping biota are carried out. Five sedimentary facies are identified through field investigation and microfacies analysis: open platform, restricted platform, tidal flat, shoal and intra-platform depression. According to the changes of multiple geochemical proxies, this section can be divided into five stages. A sudden facies transition from open platform to intra-platform depression, and high contents of Al, Ti, Sc, Th, and ∑REY in stage IV indicate a rapid sea-level rise and detrital input increase, coinciding with the preservation of the Luoping biota. This evidence suggest that enhanced continental weathering caused by global warming, global sea level rise, and frequent regional volcanic activities promoted the death and preservation of the Luoping biota.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.