Giuliano A Kullik , Moritz Waldmann , Thomas Renné
{"title":"Analysis of polyphosphate in mammalian cells and tissues: methods, functions and challenges","authors":"Giuliano A Kullik , Moritz Waldmann , Thomas Renné","doi":"10.1016/j.copbio.2024.103208","DOIUrl":null,"url":null,"abstract":"<div><div>Polyphosphates play a crucial role in various biological processes, such as blood coagulation, energy homeostasis, and cellular stress response. However, their isolation, detection, and quantification present significant challenges. These difficulties arise primarily from their solubility, low concentration in mammals, and structural similarity to other ubiquitous biopolymers. This review provides an overview of the current understanding of polyphosphates in mammals, including their proposed functions and tissue distribution. It also examines key isolation techniques, such as chromatography and precipitation, alongside detection methods, such as colorimetric assays and enzymatic digestion. The strengths and limitations of these methods are discussed, as well as the challenges in preserving polyphosphate integrity. Recent advancements in isolation and detection are also highlighted, offering a comprehensive perspective essential for advancing polyphosphate research.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"90 ","pages":"Article 103208"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924001447/pdfft?md5=17966ef883b67a95df4e8997f1d363ab&pid=1-s2.0-S0958166924001447-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924001447","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyphosphates play a crucial role in various biological processes, such as blood coagulation, energy homeostasis, and cellular stress response. However, their isolation, detection, and quantification present significant challenges. These difficulties arise primarily from their solubility, low concentration in mammals, and structural similarity to other ubiquitous biopolymers. This review provides an overview of the current understanding of polyphosphates in mammals, including their proposed functions and tissue distribution. It also examines key isolation techniques, such as chromatography and precipitation, alongside detection methods, such as colorimetric assays and enzymatic digestion. The strengths and limitations of these methods are discussed, as well as the challenges in preserving polyphosphate integrity. Recent advancements in isolation and detection are also highlighted, offering a comprehensive perspective essential for advancing polyphosphate research.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.