Ultra-weak discontinuous Galerkin method with IMEX-BDF time marching for two dimensional convection-diffusion problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Haijin Wang , Lulu Jiang , Qiang Zhang , Yuan Xu , Xiaobin Shi
{"title":"Ultra-weak discontinuous Galerkin method with IMEX-BDF time marching for two dimensional convection-diffusion problems","authors":"Haijin Wang ,&nbsp;Lulu Jiang ,&nbsp;Qiang Zhang ,&nbsp;Yuan Xu ,&nbsp;Xiaobin Shi","doi":"10.1016/j.camwa.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the stability and error estimates of the fully discrete ultra-weak discontinuous Galerkin (UWDG) methods for solving two dimensional convection-diffusion problems, where the implicit-explicit backward difference formulas (IMEX-BDF) with order from one to five are considered in time discretization. By exploiting an extension of the multiplier technique applied in Wang et al. (2023) <span><span>[41]</span></span>, and by utilizing the symmetry and coercivity properties of the UWDG discretization for the diffusion term, we establish a general framework of unconditional stability analysis for the fully discrete schemes. In addition, by exploiting the ultra-weak projection proposed in Chen and Xing (2024) <span><span>[15]</span></span>, we obtain the optimal error estimates for the considered schemes. We also present some numerical results to verify the optimal accuracy of the considered schemes for both one and two dimensional convection-diffusion problems.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004188","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the stability and error estimates of the fully discrete ultra-weak discontinuous Galerkin (UWDG) methods for solving two dimensional convection-diffusion problems, where the implicit-explicit backward difference formulas (IMEX-BDF) with order from one to five are considered in time discretization. By exploiting an extension of the multiplier technique applied in Wang et al. (2023) [41], and by utilizing the symmetry and coercivity properties of the UWDG discretization for the diffusion term, we establish a general framework of unconditional stability analysis for the fully discrete schemes. In addition, by exploiting the ultra-weak projection proposed in Chen and Xing (2024) [15], we obtain the optimal error estimates for the considered schemes. We also present some numerical results to verify the optimal accuracy of the considered schemes for both one and two dimensional convection-diffusion problems.
针对二维对流扩散问题的 IMEX-BDF 时间行进超弱非连续伽勒金方法
本文研究了用于求解二维对流扩散问题的全离散超弱非连续伽勒金(UWDG)方法的稳定性和误差估计,其中在时间离散中考虑了阶数为 1 到 5 的隐式-显式后向差分公式(IMEX-BDF)。通过利用 Wang 等人(2023)[41] 中应用的乘法器技术的扩展,并利用扩散项 UWDG 离散化的对称性和矫顽力特性,我们为完全离散方案建立了无条件稳定性分析的一般框架。此外,通过利用 Chen 和 Xing(2024)[15] 中提出的超弱投影,我们得到了所考虑方案的最优误差估计。我们还给出了一些数值结果,以验证所考虑的方案在一维和二维对流扩散问题上的最佳精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信