Nikolaos S. Papageorgiou , Dongdong Qin , Vicenţiu D. Rădulescu
{"title":"Singular non-autonomous (p,q)-equations with competing nonlinearities","authors":"Nikolaos S. Papageorgiou , Dongdong Qin , Vicenţiu D. Rădulescu","doi":"10.1016/j.nonrwa.2024.104225","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a parametric non-autonomous <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-linear and where it is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter <span><math><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span> (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001640","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a parametric non-autonomous -equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is -linear and where it is -superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.