Nadia Hartini Suhaimi , Mohammad Nur-E-Alam , Boon Kar Yap , K. Sobayel , Md. Helal Miah , Mohammad Aminul Islam , Sieh Kiong Tiong , Narottam Das , Mayeen Uddin Khandakher , Nowshad Amin
{"title":"Chronological progress in enhancing CIGS solar cell performance through window layer development: Fundamentals, synthesis, optimization","authors":"Nadia Hartini Suhaimi , Mohammad Nur-E-Alam , Boon Kar Yap , K. Sobayel , Md. Helal Miah , Mohammad Aminul Islam , Sieh Kiong Tiong , Narottam Das , Mayeen Uddin Khandakher , Nowshad Amin","doi":"10.1016/j.surfin.2024.105145","DOIUrl":null,"url":null,"abstract":"<div><div>Several factors, particularly the material of the window layer, contribute to the efficiency of CIGS solar cells. To optimize light absorption and reduce energy losses, it is critical to select the appropriate material for the window layer development. Thus, the main emphasis of this review is on the development of window layers, covering fundamental concepts, synthesis techniques, characterization methods, and optimization strategies. Metal oxides and doped metal oxides are critical materials for optimizing charge carrier flow, minimizing energy loss, and elevating sunlight transmission to the CIGS absorber. Despite tremendous progress, difficulties such as increased conductivity, transparency, stability, and cost-effectiveness remain. Discovering novel materials, specific combinations, and improved deposition techniques offers further details on the structure-property relationships of window layers. Addressing these difficulties is critical to improving the performance of CIGS solar cells, which are now approximately 23.6 % efficient. These enhancements are critical for progressing sustainable energy solutions.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468023024013014/pdfft?md5=271ab25d65f629c36e1243eb52b1a823&pid=1-s2.0-S2468023024013014-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013014","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Several factors, particularly the material of the window layer, contribute to the efficiency of CIGS solar cells. To optimize light absorption and reduce energy losses, it is critical to select the appropriate material for the window layer development. Thus, the main emphasis of this review is on the development of window layers, covering fundamental concepts, synthesis techniques, characterization methods, and optimization strategies. Metal oxides and doped metal oxides are critical materials for optimizing charge carrier flow, minimizing energy loss, and elevating sunlight transmission to the CIGS absorber. Despite tremendous progress, difficulties such as increased conductivity, transparency, stability, and cost-effectiveness remain. Discovering novel materials, specific combinations, and improved deposition techniques offers further details on the structure-property relationships of window layers. Addressing these difficulties is critical to improving the performance of CIGS solar cells, which are now approximately 23.6 % efficient. These enhancements are critical for progressing sustainable energy solutions.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.