Chalisa Panapitakkul , Christine Joy I. Bulaon , Nuttapat Pisuttinusart , Waranyoo Phoolcharoen
{"title":"Characterization of host cell proteins in the downstream process of plant-Based biologics using LC-MS profiling","authors":"Chalisa Panapitakkul , Christine Joy I. Bulaon , Nuttapat Pisuttinusart , Waranyoo Phoolcharoen","doi":"10.1016/j.btre.2024.e00856","DOIUrl":null,"url":null,"abstract":"<div><div>Host cell proteins (HCPs) are process-related impurities found in biopharmaceutical products that can impair their safety and efficacy. While ELISA has traditionally been employed to quantify HCPs, LC-MS emerges as a powerful alternative for precise identification of individual HCPs. In this study, we used LC-MS for profiling HCPs from Nicotiana benthamiana-derived biopharmaceuticals. Our approach involved rigorous false discovery rate control to ensure data integrity and reliability. Comprehensive analysis revealed a systematic reduction of HCPs following purification, demonstrating the efficiency of purification processes in removing non-essential proteins. Furthermore, LC-MS enabled the identification of potential contaminants, refining purification strategies and improving product purity and integrity. Our findings highlight the potential of LC-MS as an analytical tool for HCPs analysis in biopharmaceutical development and manufacturing. By providing detailed insights into HCPs profiles and contaminants, LC-MS facilitates informed decision-making in downstream processing steps, benefiting product quality, patient safety, and the biopharmaceutical sector.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"44 ","pages":"Article e00856"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000298/pdfft?md5=4367f12e5775aa3fd023f54a2fa29257&pid=1-s2.0-S2215017X24000298-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X24000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Host cell proteins (HCPs) are process-related impurities found in biopharmaceutical products that can impair their safety and efficacy. While ELISA has traditionally been employed to quantify HCPs, LC-MS emerges as a powerful alternative for precise identification of individual HCPs. In this study, we used LC-MS for profiling HCPs from Nicotiana benthamiana-derived biopharmaceuticals. Our approach involved rigorous false discovery rate control to ensure data integrity and reliability. Comprehensive analysis revealed a systematic reduction of HCPs following purification, demonstrating the efficiency of purification processes in removing non-essential proteins. Furthermore, LC-MS enabled the identification of potential contaminants, refining purification strategies and improving product purity and integrity. Our findings highlight the potential of LC-MS as an analytical tool for HCPs analysis in biopharmaceutical development and manufacturing. By providing detailed insights into HCPs profiles and contaminants, LC-MS facilitates informed decision-making in downstream processing steps, benefiting product quality, patient safety, and the biopharmaceutical sector.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.