Andrea Hainthaler, Akshaya S. Sidharthan, Desirée Leistenschneider, Andrea Balducci
{"title":"Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte","authors":"Andrea Hainthaler, Akshaya S. Sidharthan, Desirée Leistenschneider, Andrea Balducci","doi":"10.1016/j.powera.2024.100158","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-ion Capacitors (SICs) are becoming increasingly important energy storage devices. This study presents an in-depth comparison of a largely used electrolyte for said application, sodium hexafluorophosphate in ethylene carbonate:propylene carbonate (NaPF<sub>6</sub> in EC:PC), with the novel electrolyte sodium bis(trifluoromethanesulfonyl)imide in 1,1,2,2-tetraethoxyethane:propylene carbonate (NaTFSI in TEG:PC). Firstly, half-cells of the SIC standard electrode materials, hard carbon (HC) and activated carbon (AC), are shown to perform comparably well with the two electrolytes. However, the use of the novel electrolyte in SICs allows for an improved stability during float tests. All in all, the novel electrolyte NaTFSI in TEG:PC appears to be a very promising alternative electrolyte for SIC application.</div></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"30 ","pages":"Article 100158"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000246/pdfft?md5=c8e082d94221c43a647862db7da48bcc&pid=1-s2.0-S2666248524000246-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion Capacitors (SICs) are becoming increasingly important energy storage devices. This study presents an in-depth comparison of a largely used electrolyte for said application, sodium hexafluorophosphate in ethylene carbonate:propylene carbonate (NaPF6 in EC:PC), with the novel electrolyte sodium bis(trifluoromethanesulfonyl)imide in 1,1,2,2-tetraethoxyethane:propylene carbonate (NaTFSI in TEG:PC). Firstly, half-cells of the SIC standard electrode materials, hard carbon (HC) and activated carbon (AC), are shown to perform comparably well with the two electrolytes. However, the use of the novel electrolyte in SICs allows for an improved stability during float tests. All in all, the novel electrolyte NaTFSI in TEG:PC appears to be a very promising alternative electrolyte for SIC application.
钠离子电容器(SIC)正成为越来越重要的储能设备。本研究深入比较了上述应用中常用的电解质--碳酸乙烯酯:碳酸丙烯酯中的六氟磷酸钠(NaPF6,EC:PC)与新型电解质--1,1,2,2-四乙氧基乙烷:碳酸丙烯酯中的双(三氟甲磺酰)亚胺钠(NaTFSI,TEG:PC)。首先,SIC 标准电极材料硬碳(HC)和活性碳(AC)的半电池在两种电解质中的性能相当。不过,在 SIC 中使用新型电解质可以提高浮游测试的稳定性。总而言之,TEG:PC 中的新型电解质 NaTFSI 似乎是一种非常有前途的 SIC 应用替代电解质。