{"title":"Chemical and structural durability of α-Al2O3 and γ-LiAlO2 layers formed on ODS FeCrAl alloys in liquid lithium lead stirred flow","authors":"Masatoshi Kondo , Susumu Hatakeyama , Naoko Oono-Hori , Yoshiki Kitamura , Kan Sakamoto , Teruya Tanaka , Yoshimitsu Hishinuma","doi":"10.1016/j.corsci.2024.112459","DOIUrl":null,"url":null,"abstract":"<div><div>The protection performance of an α-Al<sub>2</sub>O<sub>3</sub> layer formed on oxide dispersion-strengthened (ODS) FeCrAl alloys in liquid LiPb flow was investigated by means of the corrosion tests under stirred-flow condition at 873 K for 1000 h. The result of STEM/EELS analysis indicated the Li adsorption and diffusion into α-Al<sub>2</sub>O<sub>3</sub> layer. The ODS FeCrAl alloys in-situ formed a durable γ-LiAlO<sub>2</sub> layer on their bare surface in liquid LiPb. The results of micro scratch tests on the protective layers indicated that they revealed strong resistance against the exfoliation in a shearing direction after the immersion to liquid LiPb.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"240 ","pages":"Article 112459"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010938X24006541/pdfft?md5=1e6d921993c0b899b72fc5d858939adf&pid=1-s2.0-S0010938X24006541-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X24006541","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The protection performance of an α-Al2O3 layer formed on oxide dispersion-strengthened (ODS) FeCrAl alloys in liquid LiPb flow was investigated by means of the corrosion tests under stirred-flow condition at 873 K for 1000 h. The result of STEM/EELS analysis indicated the Li adsorption and diffusion into α-Al2O3 layer. The ODS FeCrAl alloys in-situ formed a durable γ-LiAlO2 layer on their bare surface in liquid LiPb. The results of micro scratch tests on the protective layers indicated that they revealed strong resistance against the exfoliation in a shearing direction after the immersion to liquid LiPb.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.