Multiscale groundwater level forecasts with multi-model ensemble approaches: Combining machine learning models using decision theories and bayesian model averaging
{"title":"Multiscale groundwater level forecasts with multi-model ensemble approaches: Combining machine learning models using decision theories and bayesian model averaging","authors":"Dilip Kumar Roy , Sujit Kumar Biswas , Md Panjarul Haque , Chitra Rani Paul , Tasnia Hossain Munmun , Bithin Datta","doi":"10.1016/j.gsd.2024.101347","DOIUrl":null,"url":null,"abstract":"<div><div>Creating precise groundwater level (GWL) prediction models is of crucial significance for the productive use, extended planning, and controlling of limited sub-surface water supplies. In this research, the accuracy of GWL forecasts in Bangladesh was enhanced for three weeks by utilizing ensembles of Machine Learning (ML) models. Six advanced ML-based models were developed and assessed using eight performance indices, and an Overall Ranking (OR) was provided by combining the rankings produced by Grey Relational Analysis (GRA), Variation Coefficient (COV), and Shannon's Entropy (SE). The standalone forecasting models demonstrated excellent performance across the three forecasting horizons, with accuracy values ranging from 0.986 to 0.997 for one-step, 0.971 to 0.999 for two-step, and 0.960 to 0.997 for three-step forecasts at GT3330001. Results also revealed that three ranking techniques (SE, COV, and GRA), as well as their combined ranking (OR), produced different best-performing models at different prediction horizons for different observation wells. Weighted average ensembles of the prediction models were developed by calculating individual model weights using four ensemble modelling techniques: SE, COV, GRA, and Bayesian Model Averaging (BMA). The BMA-based ensemble technique outperformed three benchmark ensemble approaches, achieving R = 0.947, KGE = 0.925, IOA = 0.972, MAE = 0.062 m, and RMSE = 0.123 m for one-step-ahead forecasts at GT3330001. The findings exhibit a consistent trend across other forecasting horizons and observation wells. Finally, the Dempster-Shafer evidence theory was employed to rank the single and composite models. The ranking results demonstrated that the BMA-based ensemble consistently secured the top position (with the weight values of 0.997, 0.991, and 0.987 for one-week, two-weeks, and three-weeks forward forecasts at GT3330001) for all forecasting horizons and observation wells. This study shows that the BMA-based composite model can produce more accurate GWL projections at Bangladesh study location, with potential for application in other regions worldwide.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101347"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Creating precise groundwater level (GWL) prediction models is of crucial significance for the productive use, extended planning, and controlling of limited sub-surface water supplies. In this research, the accuracy of GWL forecasts in Bangladesh was enhanced for three weeks by utilizing ensembles of Machine Learning (ML) models. Six advanced ML-based models were developed and assessed using eight performance indices, and an Overall Ranking (OR) was provided by combining the rankings produced by Grey Relational Analysis (GRA), Variation Coefficient (COV), and Shannon's Entropy (SE). The standalone forecasting models demonstrated excellent performance across the three forecasting horizons, with accuracy values ranging from 0.986 to 0.997 for one-step, 0.971 to 0.999 for two-step, and 0.960 to 0.997 for three-step forecasts at GT3330001. Results also revealed that three ranking techniques (SE, COV, and GRA), as well as their combined ranking (OR), produced different best-performing models at different prediction horizons for different observation wells. Weighted average ensembles of the prediction models were developed by calculating individual model weights using four ensemble modelling techniques: SE, COV, GRA, and Bayesian Model Averaging (BMA). The BMA-based ensemble technique outperformed three benchmark ensemble approaches, achieving R = 0.947, KGE = 0.925, IOA = 0.972, MAE = 0.062 m, and RMSE = 0.123 m for one-step-ahead forecasts at GT3330001. The findings exhibit a consistent trend across other forecasting horizons and observation wells. Finally, the Dempster-Shafer evidence theory was employed to rank the single and composite models. The ranking results demonstrated that the BMA-based ensemble consistently secured the top position (with the weight values of 0.997, 0.991, and 0.987 for one-week, two-weeks, and three-weeks forward forecasts at GT3330001) for all forecasting horizons and observation wells. This study shows that the BMA-based composite model can produce more accurate GWL projections at Bangladesh study location, with potential for application in other regions worldwide.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.